Abstract

Ionic liquids (ILs) that are used in the market nowadays have high complexity of processing, high viscosity, and high toxicity in comparison to deep eutectic solvent (DES). Deep eutectic solvent is typically used in thermal energy storage, separation and extraction process or electrochemistry field. This study focuses on determining the physicochemical properties of DES, which are thermal conductivity, viscosity, and surface tension. DES was prepared by mixing hydrogen-bond donor (HBD) compounds (ethylene glycol) and hydrogen-bond acceptor (HBA) compounds (N,N-diethylethanolammonium chloride) at different molar compositions. The data show that the molar ratio HBA:HBD of 1:2 resulted in optimized values of thermal conductivity (0.218 W/mK), low viscosity (38.1 cP), and high surface tension (54 mN/m). Most notably, DES is capable of sustaining in a liquid phase at ambient condition (25 °C) for more than 30 days. Fourier transform infrared spectrum did not indicate any presence of a new peak. This established that only delocalization of ions occurred, and hence, chemical transformations did not take place during mixing. The data obtained showed that the newly synthesized solvent (DES) possess better result than the ILs. Therefore, DES can be proposed to replace the dependency on ILs.

References

1.
Cho
,
C. W.
,
Pham
,
T. P. T.
,
Zhao
,
Y.
,
Stolte
,
S.
, and
Yun
,
Y. S.
,
2021
, “
Review of the Toxic Effects of Ionic Liquids
,”
Sci. Total Environ.
,
786
(
2
), pp.
147
309
.
2.
Wu
,
W.
,
2020
, “
Low-Temperature Compression-Assisted Absorption Thermal Energy Storage Using Ionic Liquids
,”
Energy Built Environ.
,
1
(
2
), pp.
139
148
.
3.
Shi
,
H.
,
Zhang
,
X.
,
Sundmacher
,
K.
, and
Zhou
,
T.
,
2021
, “
Model-Based Optimal Design of Phase Change Ionic Liquids for Efficient Thermal Energy Storage
,”
Green Energy Environ.
,
6
(
3
), pp.
392
404
.
4.
Bogdanov
,
M. G.
, and
Svinyarov
,
I.
,
2018
, “
Efficient Purification of Halide-Based Ionic Liquids by Means of Improved Apparatus for Continuous Liquid-Liquid Extraction
,”
Sep. Purif. Technol.
,
196
(
3
), pp.
57
60
.
5.
Zhang
,
H.
,
Kong
,
M.
,
Jiang
,
Q.
,
Hub
,
K.
,
Ouyang
,
M.
,
Zhong
,
F.
,
Qin
,
M.
,
Zhuang
,
L.
, and
Wang
,
G.
,
2021
, “
Chitosan Membranes From Acetic Acid and Imidazolium Ionic Liquids: Effect of Imidazolium Structure on Membrane Properties
,”
J. Mol. Liq.
,
340
(
3
), pp.
117
209
.
6.
Park
,
J.
,
Jung
,
Y.
,
Kusumah
,
P.
,
Lee
,
J.
,
Kwon
,
K.
, and
Lee
,
C. K.
,
2014
, “
Application of Ionic Liquids in Hydrometallurgy
,”
Int. J. Mol. Sci.
,
15
(
9
), pp.
15320
15343
.
7.
Ibrahim
,
R. K.
,
Hayyan
,
M.
,
AlSaadi
,
M. A.
,
Ibrahim
,
S.
,
Hayyan
,
A.
, and
Hashim
,
M. A.
,
2019
, “
Physical Properties of Ethylene Glycol-Based Deep Eutectic Solvents
,”
J. Mol. Liq.
,
276
(
1
), pp.
794
800
.
8.
Al-Murshedi
,
A. Y. M.
,
Alesary
,
H. F.
, and
Al-Hadrawi
,
R.
,
2019
, “
Thermophysical Properties in Deep Eutectic Solvents With/Without Water
,”
J. Phys.: Conf. Ser.
,
1294
(
5
), pp.
52
41
.
9.
Gautam
,
R. K.
, and
Seth
,
D.
,
2020
, “
Thermal Conductivity of Deep Eutectic Solvents
,”
J. Therm. Anal. Calorim.
,
140
(
6
), pp.
2633
2640
.
10.
Singh
,
A.
,
Walvekar
,
R.
,
Khalid
,
M.
,
Wong
,
W. Y.
, and
Gupta
,
T. C. S. M.
,
2018
, “
Thermophysical Properties of Glycerol and Polyethylene Glycol (PEG 600) Based DES
,”
J. Mol. Liq.
,
252
(
5
), pp.
439
444
.
11.
Ghaedi
,
H.
,
Ayoub
,
M.
,
Sufian
,
S.
,
Lal
,
B.
, and
Uemura
,
Y.
,
2017
, “
Thermal Stability and FT-IR Analysis of Phosphonium-Based Deep Eutectic Solvents With Different Hydrogen Bond Donors
,”
J. Mol. Liq.
,
242
(
3
), pp.
395
403
.
12.
Abbott
,
A. P.
,
Capper
,
G.
,
Davies
,
D. L.
,
Rasheed
,
R. K.
, and
Tambyrajah
,
V.
,
2003
, “
Novel Solvent Properties of Choline Chloride/Urea Mixtures
,”
Chem. Commun.
,
1
(
1
), pp.
70
71
.
13.
Itoh
,
T.
,
2017
, “
Ionic Liquids as Tool to Improve Enzymatic Organic Synthesis
,”
Chem. Rev.
,
117
(
4
), pp.
10567
10607
.
14.
Cui
,
Y.
,
Li
,
C.
,
Yin
,
J.
,
Li
,
S.
,
Jia
,
Y.
, and
Ba
,
M.
,
2017
, “
Design, Synthesis and Properties of Acidic Deep Eutectic Solvents Based on Choline Chloride
,”
J. Mol. Liq.
,
236
(
4
), pp.
338
343
.
15.
Omar
,
K. A.
, and
Sadeghi
,
R.
,
2022
, “
Physicochemical Properties of Deep Eutectic Solvents: A Review
,”
J. Mol. Liq.
,
360
(
2
), pp.
119
524
.
16.
Jafari
,
K.
,
Hossein
,
M.
, and
Estellé
,
P.
,
2021
, “
Deep Eutectic Solvents (DESs): A Short Overview of the Thermophysical Properties and Current Use as Base Fluid for Heat Transfer Nano Fluids
,”
J. Mol. Liq.
,
321
(
4
), pp.
114
752
.
17.
Siongco
,
K. R.
,
Leron
,
R. B.
, and
Li
,
M.-H.
,
2013
, “
Densities, Refractive Indices, and Viscosities of N,N-Diethylethanol Ammonium Chloride-Glycerol or -Ethylene Glycol Deep Eutectic Solvents and Their Aqueous Solutions
,”
J. Chem. Thermodyn.
,
65
(
2
), pp.
65
72
.
18.
Walvekar
,
R.
,
Chen
,
Y. Y.
,
Saputra
,
R.
,
Khalid
,
M.
,
Panchal
,
H.
,
Chandran
,
D.
,
Muabrak
,
N. M.
, and
Sadasivuni
,
K. K.
,
2021
, “
Deep Eutectic Solvents-Based CNT Nanofluid—A Potential Alternative to Conventional Heat Transfer Fluids
,”
J. Taiwan Inst. Chem. Eng.
,
128
(
2
), pp.
314
326
.
19.
Marcus
,
Y.
,
2019
,
Applications of Deep Eutectic Solvents
,
Springer
,
New York
.
20.
Munoz
,
R. C.
,
Msahel
,
A.
,
Galiano
,
F.
,
Serocki
,
M.
,
Ryl
,
J.
,
Hamouda
,
S. B.
,
Hafiane
,
A.
,
Boczkaj
,
G.
, and
Figoli
,
A.
,
2022
, “
Towards Azeotropic MeOH-MTBE Separation Using Pervaporation Chitosan-Based Deep Eutectic Solvent Membranes
,”
Sep. Purif. Technol.
,
281
(
10
), pp.
119
979
.
21.
Aruchamy
,
K.
,
Maalige
,
N. R.
,
Halanur
,
M. M.
,
Mahto
,
A.
,
Nagaraj
,
R.
,
Kalpana
,
D.
,
Ghosh
,
D.
,
Mondal
,
D.
, and
Nataraj
,
S. K.
,
2020
, “
Ultrafast Synthesis of Exfoliated Manganese Oxides in Deep Eutectic Solvents for Water Purification and Energy Storage
,”
Chem. Eng. J.
,
379
(
4
), pp.
122
327
.
22.
Kityk
,
A.
,
Protsenko
,
V.
,
Danilov
,
F.
,
Pavlik
,
V.
,
Hnatko
,
M.
, and
Šoltýs
,
J.
,
2021
, “
Enhancement of the Surface Characteristics of Ti-Based Biomedical Alloy by Electropolishing in Environmentally Friendly Deep Eutectic Solvent (Ethaline)
,”
Colloids Surf. A: Physicochem. Eng. Asp.
,
613
(
1
), pp.
125
126
.
23.
Jakubowska
,
E.
,
Gierszewska
,
M.
,
Nowaczyk
,
J.
, and
Olewnik-kruszkowska
,
E.
,
2021
, “
The Role of a Deep Eutectic Solvent in Changes of Physicochemical and Antioxidative Properties of Chitosan-Based Films
,”
Carbohydr. Polym. J.
,
255
(
6
), pp.
117
527
.
24.
Ijardar
,
S. P.
,
2020
, “
Deep Eutectic Solvents Composed of Tetrabutylammonium Bromide and PEG: Density, Speed of Sound and Viscosity as a Function of Temperature
,”
J. Chem. Thermodyn.
,
140
(
4
), pp.
105
897
.
25.
Yuan
,
W. L.
,
Yang
,
X.
,
He
,
L.
,
Xue
,
Y.
,
Qin
,
S.
, and
Tao
,
G. H.
,
2018
, “
Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids
,”
Front. Chem.
,
6
(
3
), pp.
1
12
.
26.
Bakhtyari
,
A.
,
Haghbakhsh
,
R.
,
Duarte
,
A. R. C.
, and
Raeissi
,
S.
,
2020
, “
A Simple Model for the Viscosities of Deep Eutectic Solvents
,”
Fluid Phase Equilib.
,
521
(
5
), pp.
112
662
.
27.
Haghbakhsh
,
R.
,
Parvaneh
,
K.
,
Raeissi
,
S.
, and
Shariati
,
A.
,
2018
, “
A General Viscosity Model for Deep Eutectic Solvents: The Free Volume Theory Coupled With Association Equations of State
,”
Fluid Phase Equilib.
,
470
(
8
), pp.
193
202
.
28.
Omar
,
K. A.
, and
Sadeghi
,
R.
,
2020
, “
Novel Benzilic Acid-Based Deep-Eutectic-Solvents: Preparation and Physicochemical Properties Determination
,”
Fluid Phase Equilib.
,
522
(
7
), pp.
112
752
.
29.
Liu
,
C.
,
Mei
,
G.
,
Yu
,
M.
,
Cheng
,
Q.
, and
Yang
,
S.
,
2021
, “
New Applications of Deep Eutectic Solvents for Separation of Quartz and Magnetite
,”
Chem. Phys. Lett.
,
762
(
10
), pp.
138
152
.
30.
Chen
,
Y.
,
Chen
,
W.
,
Fu
,
L.
,
Yang
,
Y.
,
Wang
,
Y.
,
Hu
,
X.
,
Wang
,
F.
, and
Mu
,
T.
,
2019
, “
Surface Tension of 50 Deep Eutectic Solvents: Effect of Hydrogen-Bonding Donors, Hydrogen-Bonding Acceptors, Other Solvents, and Temperature
,”
Ind. Eng. Chem. Res.
,
58
(
28
), pp.
12741
12750
.
31.
Ghaedi
,
H.
,
Ayoub
,
M.
,
Sufian
,
S.
,
Shariff
,
A. M.
, and
Lal
,
B.
,
2017
, “
The Study on Temperature Dependence of Viscosity and Surface Tension of Several Phosphonium-Based Deep Eutectic Solvents
,”
J. Mol. Liq.
,
241
(
2
), pp.
500
510
.
32.
Gao
,
Q.
,
Zhu
,
Y.
,
Ji
,
X.
,
Zhu
,
W.
,
Lu
,
L.
, and
Lu
,
X.
,
2018
, “
Effect of Water Concentration on the Microstructures of Choline Chloride/Urea (1:2) /Water Mixture
,”
Fluid Phase Equilib.
,
470
(
1
), pp.
134
139
.
33.
Chen
,
Y.
,
Fu
,
L.
,
Liu
,
Z.
,
Dai
,
F.
,
Dong
,
Z.
,
Li
,
D.
,
Liu
,
H.
,
Zhao
,
D.
, and
Lou
,
Y.
,
2020
, “
Surface Tension and Surface Thermodynamic Properties of PEG-Based Deep Eutectic Solvents
,”
J. Mol. Liq.
,
318
(
4
), pp.
1
9
.
34.
Zeng
,
C.
,
Liu
,
Y.
,
Ding
,
Z.
,
Xia
,
H.
, and
Guo
,
S.
,
2021
, “
Physicochemical Properties and Antibacterial Activity of Hydrophobic Deep Eutectic Solvent-in-Water Nanoemulsion
,”
J. Mol. Liq.
,
338
(
2
), pp.
116
950
.
35.
Rahman
,
S.
, and
Raynie
,
D. E.
,
2021
, “
Thermal Behavior, Solvatochromic Parameters, and Metal Halide Solvation of the Novel Water-Based Deep Eutectic Solvents
,”
J. Mol. Liq. J.
,
324
(
11
), pp.
114
779
.
36.
Vanda
,
H.
,
Dai
,
Y.
,
Wilson
,
E. G.
,
Verpoorte
,
R.
, and
Choi
,
Y. H.
,
2018
, “
Green Solvents From Ionic Liquids and Deep Eutectic Solvents to Natural Deep Eutectic Solvents
,”
Comptes Rendus Chim.
,
21
(
6
), pp.
628
638
.
37.
Ibrahim
,
T. H.
,
Sabri
,
M. A.
,
Jabbar
,
N. A.
,
Nancarrow
,
P.
,
Mjalli
,
F. S.
, and
AlNashef
,
I.
,
2020
, “
Thermal Conductivities of Choline Chloride-Based Deep Eutectic Solvents and Their Mixtures With Water: Measurement and Estimation
,”
Molecules
,
25
(
17
), pp.
1
16
.
38.
Albayati
,
N.
,
Kadhom
,
M.
,
Abdullah
,
G.
, and
Salih
,
S.
,
2021
, “
Thermal Conductivity of Room Temperature Deep Eutectic Solvents
,”
J. Therm. Sci.
,
48
(
6
), pp.
52
63
.
39.
Ghaedi
,
H.
,
Ayoub
,
M.
,
Sufian
,
S.
,
Hailegiorgis
,
S. M.
,
Murshid
,
G.
, and
Khan
,
S. N.
,
2018
, “
Thermal Stability Analysis, Experimental Conductivity and pH of Phosphonium-Based Deep Eutectic Solvents and Their Prediction by a New Empirical Equation
,”
J. Chem. Thermodyn.
,
116
(
4
), pp.
50
60
.
40.
Elderderi
,
S.
,
Loubière
,
C. L.
,
Wils
,
L.
,
Henry
,
S.
,
Bertrand
,
D.
,
Byrne
,
H. J.
,
Chourpa
,
I.
, et al
,
2020
, “
ATR-IR Spectroscopy for Rapid Quantification of Water Content in Deep Eutectic Solvents
,”
J. Mol. Liq.
,
311
(
5
), pp.
113
361
.
41.
Amphlett
,
J. T. M.
,
Ogden
,
M. D.
,
Yang
,
W.
, and
Choi
,
S.
,
2020
, “
Probing Ni2 + and Co2 + Speciation in Carboxylic Acid Based Deep Eutectic Solvents Using UV/Vis and FT-IR Spectroscopy
,”
J. Mol. Liq.
,
318
(
3
), pp.
114
217
.
You do not currently have access to this content.