Abstract

The importance of lithium-ion batteries in renewable energy storage applications cannot be sufficiently explained and can be used in hybrid vehicles, electronic devices, wearable electronics, and so on because of their high energy and power density. Here, we report the significance of understanding how the efficiency and performance are affected by battery internal chemistry. To study the degree of influence on battery efficiency, a computer-aided multiphysics simulation is implemented in comsol by using the mathematical model of the battery. The properties included in the study are initial salt concentration in the electrodes, length of the electrodes, the volumetric ratio of the electrode materials, the volumetric ratio of the electrolyte, initial concentration of lithium ions, and the lithium-ion diffusivity. The simulation results have indicated that the increment in the concentration of the positive electrode material has improved the battery performance by 15%, and the increase in the initial salt concentration produced a 14% increase in the power-energy performance.

References

1.
Cai
,
R.
,
Yuan
,
T.
,
Ran
,
R.
,
Liu
,
X.
, and
Shao
,
Z.
,
2011
, “
Preparation and Re-Examination of Li4Ti4. 85Al0. 15O12 as Anode Material of Lithium-Ion Battery
,”
Int. J. Energy Res.
,
35
(
1
), pp.
68
77
.
2.
Jin
,
B.
,
Sun
,
G.
,
Liang
,
J.
, and
Gu
,
H. B.
,
2013
, “
Physicochemical Properties of Lithium Iron Phosphate-Carbon as Lithium Polymer Battery Cathodes
,”
Int. J. Energy Res.
,
37
(
6
), pp.
500
509
.
3.
Barré
,
A.
,
Deguilhem
,
B.
,
Grolleau
,
S.
,
Gérard
,
M.
,
Suard
,
F.
, and
Riu
,
D.
,
2013
, “
A Review on Lithium-Ion Battery Ageing Mechanisms and Estimations for Automotive Applications
,”
J. Power Sources
,
241
(
1
), pp.
680
689
.
4.
Scrosati
,
B.
,
1995
, “
Challenge of Portable Power
,”
Nature
,
373
(
6515
), pp.
557
558
.
5.
Winter
,
M.
, and
Brodd
,
R. J.
,
2004
, “
What Are Batteries, Fuel Cells, and Supercapacitors?
,”
Chem. Rev.
,
104
(
10
), pp.
4245
4270
.
6.
Karimi
,
G.
, and
Dehghan
,
A. R.
,
2012
, “
Thermal Management Analysis of a Lithium-Ion Battery Pack Using Flow Network Approach
,”
Int. J. Mech. Eng. Mechatron.
,
1
(
2
), pp.
88
94
.
7.
Awarke
,
A.
,
Jaeger
,
M.
,
Oezdemir
,
O.
, and
Pischinger
,
S.
,
2013
, “
Thermal Analysis of a Li-Ion Battery Module Under Realistic EV Operating Conditions
,”
Int. J. Energy Res.
,
37
(
6
), pp.
617
630
.
8.
Feng
,
Z. C.
, and
Zhang
,
Y.
,
2014
, “
Thermal Runaway Due to Symmetry Breaking in Parallel-Connected Battery Cells
,”
Int. J. Energy Res.
,
38
(
6
), pp.
813
821
.
9.
Scrosati
,
B.
, and
Garche
,
J.
,
2010
, “
Lithium Batteries: Status, Prospects and Future
,”
J. Power Sources
,
195
(
9
), pp.
2419
2430
.
10.
Taheri
,
P.
,
Mansouri
,
A.
,
Schweitzer
,
B.
,
Yazdanpour
,
M.
, and
Bahrami
,
M.
,
2013
, “
Electrical Constriction Resistance in Current Collectors of Large-Scale Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
160
(
10
), p.
A1731
.
11.
Sahithya
,
K. V.
,
Kavitha
,
D.
,
Balachandran
,
M.
, and
Kumar
,
M.
,
2017
, “
Polymer Nanocomposite Containing High Permittivity Nanoparticles for Energy Storage Application
,”
Int. J. Nanotechnol. Appl
,
11
(
4
), pp.
305
318
.
12.
Kavitha
,
D.
,
2015
, “
Modeling of Electric Field Distribution in Epoxy Nanocomposites Using Finite Element Method
,”
J. Electr. Eng.
,
15
(
3
), pp.
7
7
.
13.
Sturm
,
J.
,
Frank
,
A.
,
Rheinfeld
,
A.
,
Erhard
,
S. V.
, and
Jossen
,
A.
,
2020
, “
Impact of Electrode and Cell Design on Fast Charging Capabilities of Cylindrical Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
167
(
13
), p.
130505
.
14.
Eddahech
,
A.
,
Briat
,
O.
,
Henry
,
H.
,
Delétage
,
J. Y.
,
Woirgard
,
E.
, and
Vinassa
,
J. M.
,
2011
, “
Ageing Monitoring of Lithium-Ion Cell During Power Cycling Tests
,”
Microelectron. Reliab.
,
51
(
9–11
), pp.
1968
1971
.
15.
Mei
,
W.
,
Chen
,
H.
,
Sun
,
J.
, and
Wang
,
Q.
,
2019
, “
The Effect of Electrode Design Parameters on Battery Performance and Optimization of Electrode Thickness Based on the Electrochemical–Thermal Coupling Model
,”
Sustainable Energy Fuels
,
3
(
1
), pp.
148
165
.
16.
Ramadesigan
,
V.
,
Northrop
,
P. W.
,
De
,
S.
,
Santhanagopalan
,
S.
,
Braatz
,
R. D.
, and
Subramanian
,
V. R.
,
2012
, “
Modeling and Simulation of Lithium-Ion Batteries From a Systems Engineering Perspective
,”
J. Electrochem. Soc.
,
159
(
3
), pp.
R31
R45
.
17.
Fuller
,
T. F.
,
Doyle
,
M.
, and
Newman
,
J.
,
1994
, “
Simulation and Optimization of the Dual Lithium Ion Insertion Cell
,”
J. Electrochem. Soc.
,
141
(
1
), pp.
1
10
.
18.
Kavitha
,
D.
,
Sindhu
,
T. K.
, and
Nambiar
,
T. N. P.
,
2017
, “
Impact of Permittivity and Concentration of Filler Nanoparticles on Dielectric Properties of Polymer Nanocomposites
,”
IET Sci. Meas. Technol.
,
11
(
2
), pp.
179
185
.
19.
Nambiar
,
T. N. P.
,
Kavitha
,
D.
, and
Sindhu
,
T. S.
,
2014
, “
Investigation of Treeing Process in Nanofilled Epoxy Material by Finite Element Method
,”
J. Electr. Eng.
,
14
(
1
), p.
6
.
20.
Krishnan
,
A. R.
, and
Kavitha
,
D.
,
2021
, “
Influence of High Permittivity Nanoparticle Coating on Composite Graphite Electrodes of Electrical Double Layer Capacitor
,”
Mater. Today: Proc.
,
46
(
10
), pp.
5048
5053
.
21.
Hannan
,
M. A.
,
Hoque
,
M. M.
,
Hussain
,
A.
,
Yusof
,
Y.
, and
Ker
,
P. J.
,
2018
, “
State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations
,”
IEEE Access
,
6
, pp.
19362
19378
.
22.
Huber
,
I. S.
,
2017
, “
Using COMSOL to Model a 1-D Lithium-Ion Battery
,”
Doctoral dissertation
,
College of William and Mary
,
Williamsburg, VA
.
23.
Lu
,
J.
,
2013
, “
Development of Fast One-Dimensional Model for Prediction of Coupled Electrochemical-Thermal Behavior of Lithium-Ion Batteries
,”
Doctoral dissertation
,
The Ohio State University
,
Columbus, OH
.
24.
Chepyala
,
S.
,
2017
, “
Simulation of Li-Ion Coin Cells Using COMSOL Multiphysics
,”
Doctoral dissertation
,
The Florida State University
,
Tallahassee, FL
.
25.
Reddy
,
T. B.
,
2011
,
Linden’s Handbook of Batteries
,
McGraw-Hill
,
New York
.
26.
Sasaki
,
T.
,
Ukyo
,
Y.
, and
Novák
,
P.
,
2013
, “
Memory Effect in a Lithium-Ion Battery
,”
Nat. Mater.
,
12
(
6
), pp.
569
575
.
27.
Sikha
,
G.
,
Popov
,
B. N.
, and
White
,
R. E.
,
2004
, “
Effect of Porosity on the Capacity Fade of a Lithium-Ion Battery: Theory
,”
J. Electrochem. Soc.
,
151
(
7
), p.
A1104
.
28.
Cras
,
F. L.
,
Pecquenard
,
B.
,
Dubois
,
V.
,
Phan
,
V. P.
, and
Guy-Bouyssou
,
D.
,
2015
, “
All-Solid-State Lithium-Ion Microbatteries Using Silicon Nanofilm Anodes: High Performance and Memory Effect
,”
Adv. Energy Mater.
,
5
(
19
), p.
1501061
.
29.
Ravikumar
,
B.
,
Mynam
,
M.
, and
Rai
,
B.
,
2018
, “
Effect of Salt Concentration on Properties of Lithium ion Battery Electrolytes: A Molecular Dynamics Study
,”
J. Phys. Chem. C
,
122
(
15
), pp.
8173
8181
.
30.
Zarrin
,
H.
,
Farhad
,
S.
,
Hamdullahpur
,
F.
,
Chabot
,
V.
,
Yu
,
A.
,
Fowler
,
M.
, and
Chen
,
Z.
,
2014
, “
Effects of Diffusive Charge Transfer and Salt Concentration Gradient in Electrolyte on Li-Ion Battery Energy and Power Densities
,”
Electrochim. Acta.
,
125
, pp.
117
123
.
31.
Suthar
,
B.
,
Northrop
,
P. W.
,
Rife
,
D.
, and
Subramanian
,
V. R.
,
2015
, “
Effect of Porosity, Thickness and Tortuosity on Capacity Fade of Anode
,”
J. Electrochem. Soc.
,
162
(
9
), pp.
A1708
A1717
.
32.
Zhao
,
R.
,
Liu
,
J.
, and
Gu
,
J.
,
2015
, “
The Effects of Electrode Thickness on the Electrochemical and Thermal Characteristics of Lithium Ion Battery
,”
Appl. Energy
,
139
, pp.
220
229
.
33.
Lu
,
C. H.
, and
Lin
,
S. W.
,
2001
, “
Influence of the Particle Size on the Electrochemical Properties of Lithium Manganese Oxide
,”
J. Power Sources
,
97
, pp.
458
460
.
34.
Christen
,
T.
, and
Carlen
,
M. W.
,
2000
, “
Theory of Ragone Plots
,”
J. Power Sources
,
91
(
2
), pp.
210
216
.
You do not currently have access to this content.