Abstract

Graphene nanosheets are produced in mass by Hummers method, accompanied with the emission of waste acid effluent with Mn2+, which should be reasonably recycled. Herein, Mn2+ was extracted into Mn3O4 nanoparticles by oxidation precipitation. Desirably, Mn3O4 powders were the spinel crystal phase and the particle size was 100–150 nm. The reversible discharge capacities of Mn3O4 anode maintained 528 mA h/g at 0.5 A/g for 100 cycles and 423 mA h/g at 1.0 A/g for 300 cycles, with high capacity retention ratios of 93.4% and 91.1%, respectively. Obviously, this work may promote the development of the circular economy.

References

1.
Pindar
,
S.
, and
Dhawan
,
N.
,
2020
, “
Microwave Processing of Spent Coin Cells for Recycling of Metallic Values
,”
J. Cleaner Prod.
,
280
(
2
), p.
124114
.
2.
Kristensen
,
H. S.
, and
Mosgaard
,
M. A.
,
2019
, “
A Review of Micro Level Indicators for a Circular Economy-Moving Away From the Three Dimensions of Sustainability?
J. Cleaner Prod.
,
243
(
1
), p.
118531
.
3.
Lin
,
L.
,
Peng
,
H. L.
, and
Liu
,
Z. F.
,
2019
, “
Synthesis Challenges for Graphene Industry
,”
Nat. Mater.
,
18
(
6
), pp.
520
524
.
4.
Fang
,
W. J.
,
Hsu
,
A. L.
,
Song
,
Y.
, and
Kong
,
J.
,
2015
, “
A Review of Large-Area Bilayer Graphene Synthesis by Chemical Vapor Deposition
,”
Nanoscale
,
7
(
48
), pp.
20335
20351
.
5.
Hernandez
,
Y.
,
Nicolosi
,
V.
,
Lotya
,
M.
,
Blighe
,
F. M.
,
Sun
,
Z. Y.
,
De
,
S.
,
McGovern
,
I. T.
, et al
,
2008
, “
High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite
,”
Nat. Nanotechnol.
,
3
(
9
), pp.
563
568
.
6.
Gao
,
Y.
,
Cao
,
T. F.
,
Cellini
,
F.
,
Berger
,
C.
,
de Heer
,
W. A.
,
Tosatti
,
E.
,
Riedo
,
E.
, and
Bongiorno
,
A.
,
2017
, “
Ultrahard Carbon Film From Epitaxial Two-Layer Graphene
,”
Nat. Nanotechnol.
,
13
(
2
), pp.
133
140
.
7.
Cai
,
L.
, and
Yu
,
G.
,
2019
, “
Recent Advances in Growth and Modification of Graphene-Based Energy Materials: From Chemical Vapor Deposition to Reduction of Graphene Oxide
,”
Small Methods
,
67
(
7
), pp.
115
157
.
8.
Millaleo
,
R.
,
Reyes-Diaz
,
M.
,
Ivanov
,
A. G.
,
Mora
,
M. L.
, and
Alberdi
,
M.
,
2010
, “
Manganese as Essential and Toxic Element for Plants: Transport, Accumulation and Resistance Mechanisms
,”
J. Soil Sci. Plant Nutr.
,
10
(
4
), pp.
476
494
.
9.
Li
,
J. F.
,
Jia
,
Y. D.
,
Dong
,
R. S.
,
Huang
,
R.
,
Liu
,
P. D.
,
Li
,
X. Y.
,
Wang
,
Z. Y.
,
Liu
,
G. D.
, and
Chen
,
Z. J.
,
2019
, “
Advances in the Mechanisms of Plant Tolerance to Manganese Toxicity
,”
Int. J. Mol. Sci.
,
20
(
20
), p.
5096
.
10.
Martinez-Finley
,
E. J.
,
Gavin
,
C. E.
,
Aschner
,
M.
,
Aschner
,
M.
, and
Gunter
,
T. E.
,
2013
, “
Manganese Neurotoxicity and the Role of Reactive Oxygen Species
,”
Free Rad. Biol. Med.
,
62
(
1
), pp.
65
75
.
11.
Lin
,
Z. X.
,
Yuan
,
P.
,
Yue
,
Y. Y.
,
Bai
,
Z. S.
,
Zhu
,
H. B.
,
Wang
,
T. H.
, and
Bao
,
X. J.
,
2020
, “
Selective Adsorption of Co(II)/Mn(II) by Zeolites From Purified Terephthalic Acid Wastewater Containing Dissolved Aromatic Organic Compounds and Metal Ions
,”
Sci. Total Environ.
,
698
(
1
), p.
134287
.
12.
Zhang
,
W. S.
,
Cheng
,
C. Y.
, and
Pranolo
,
Y.
,
2010
, “
Investigation of Methods for Removal and Recovery of Manganese in Hydrometallurgical Processes
,”
Hydrometallurgy
,
101
(
1–2
), pp.
58
63
.
13.
Chai
,
Y. Z.
,
Qin
,
P. F.
,
Zhang
,
J. C.
,
Li
,
T. Y.
,
Dai
,
Z. J.
, and
Wu
,
Z. B.
,
2020
, “
Simultaneous Removal of Fe(II) and Mn(II) From Acid Mine Wastewater by Electro-Fenton Process
,”
Process Saf. Environ.
,
143
(
1
), pp.
76
90
.
14.
Yang
,
X. Y.
,
Jie
,
F. P.
,
Wang
,
B. J.
, and
Bai
,
Z. S.
,
2019
, “
High-Efficient Synergistic Extraction of Co(II) and Mn(II) From Wastewater Via Novel Microemulsion and Annular Centrifugal Extractor
,”
Sep. Purif. Technol.
,
209
(
1
), pp.
997
1006
.
15.
Miao
,
S. Y.
,
Chen
,
G. Z.
,
Delaune
,
R. D.
, and
Jugsujinda
,
A.
,
2007
, “
Partitioning and Removal of Cd and Mn Using a Simulated Mangrove Wastewater Treatment System
,”
J. Environ. Sci. Health Part A
,
42
(
4
), pp.
405
411
.
16.
Li
,
Y. C.
,
Xu
,
Z.
,
Ma
,
H. Q.
, and
Hursthouse
,
A.
,
2019
, “
Removal of Manganese(II) From Acid Mine Wastewater: A Review of the Challenges and Opportunities With Special Emphasis on Mn-Oxidizing Bacteria and Microalgae
,”
Water
,
11
(
12
), p.
2493
.
17.
Cao
,
K. Z.
,
Jia
,
Y. H.
,
Wang
,
S. D.
,
Huang
,
K. J.
, and
Liu
,
H. Q.
,
2021
, “
Mn3O4 Nanoparticles Anchored on Carbon Nanotubes as Anode Material With Enhanced Lithium Storage
,”
J. Alloys Compd.
,
854
(
15
), p.
157179
.
18.
Peng
,
T. F.
,
Xu
,
L. J.
, and
Chen
,
H. C.
,
2010
, “
Preparation and Characterization of High Specific Surface Area Mn3O4 From Electrolytic Manganese Residue
,”
Cent. Eur. J. Chem.
,
8
(
5
), pp.
1059
1068
.
19.
Shen
,
W.
,
Ren
,
Y. S.
,
Ma
,
H. J.
,
Mu
,
H. X.
,
Tian
,
H.
, and
Tang
,
G. X.
,
2016
, “
Investigation of Solid–Liquid Equilibria on the System Na+, K+//CI, SO42−-H2O and Na+, K+//SO42−-H2O at 313.15 K
,”
J. Chem. Eng. Data
,
61
(
6
), pp.
2027
2039
.
20.
Torres
,
E.
,
Lozano
,
A.
,
Macías
,
F.
,
Gomez-Arias
,
A.
,
Castillo
,
J.
, and
Ayora
,
C.
,
2018
, “
Passive Elimination of Sulfate and Metals From Acid Mine Drainage Using Combined Limestone and Barium Carbonate Systems
,”
J. Cleaner Prod.
,
182
(
1
), pp.
114
123
.
21.
Chen
,
Y. X.
,
Long
,
J. Y.
,
Chen
,
S. H.
,
Xie
,
Y.
,
Xu
,
Z. F.
,
Ning
,
Z. P.
,
Zhang
,
G. S.
, et al
,
2021
, “
Multi-step Purification of Electrolytic Manganese Residue Leachate Using Hydroxide Sedimentation, Struvite Precipitation, Chlorination and Coagulation: Advanced Removal of Manganese, Ammonium, and Phosphate
,”
Sci. Total Environ.
,
805
(
20
), p.
150237
.
22.
Dai
,
Z. P.
,
Hou
,
H. Y.
,
Liu
,
X. X.
,
Yao
,
Y.
,
Yu
,
C. Y.
, and
Li
,
D. D.
,
2019
, “
Exploiting the Non-Medical Value of Waste Expired Aminophylline for Lithium Ion Battery Anode
,”
Surf. Innov.
,
7
(
1
), pp.
26
34
.
23.
Seyedahmadian
,
M.
,
Houshyarazar
,
S.
, and
Amirshaghaghi
,
A.
,
2013
, “
Synthesis and Characterization of Nanosized of Spinel LiMn2O4 Via Sol–Gel and Freeze Drying Methods
,”
Bull. Korean Chem. Soc.
,
34
(
2
), pp.
622
628
.
24.
Kirillov
,
S. A.
,
Aleksandrova
,
V. S.
,
Lisnycha
,
T. V.
,
Dzanashvivl
,
D. I.
,
Khainakov
,
S. A.
,
Garcia
,
J. R.
,
Visloguzova
,
N. M.
, and
Pendelyuk
,
O. I.
,
2009
, “
Oxidation of Synthetic Hausmannite (Mn3O4) to Manganite (MnOOH)
,”
J. Mol. Struct.
,
928
(
1–3
), pp.
89
94
.
25.
Rani
,
B. J.
,
Ravina
,
M.
,
Ravi
,
G.
,
Ravichandran
,
S.
,
Ganesh
,
V.
, and
Yuvakkumar
,
R.
,
2018
, “
Synthesis and Characterization of Hausmannite (Mn3O4) Nanostructures
,”
Surf. Interfaces
,
11
(
3
), pp.
28
36
.
26.
Zhang
,
L.
,
Wang
,
S.
,
Ding
,
Y.
,
Lv
,
L. R.
,
Chen
,
Y. T.
,
Xu
,
D. K.
, and
Wang
,
S. D.
,
2018
, “
Facile Synthesis of Gamma-MnOOH Nanorods Via a Redox Precipitation Route Using Oxygen and Their Thermal Conversion
,”
Chemistryselect
,
3
(
42
), pp.
11908
11913
.
27.
Post
,
J. E.
,
Mckeown
,
D. A.
, and
Heaney
,
P. J.
,
2020
, “
Raman Spectroscopy Study of Manganese Oxides: Tunnel Structures
,”
Am. Mineral.
,
105
(
8
), pp.
1175
1190
.
28.
Mironova-Ulmane
,
N.
,
Kuzmin
,
A.
, and
Grube
,
M.
,
2009
, “
Raman and Infrared Spectromicroscopy of Manganese Oxides
,”
J. Alloys Compd.
,
480
(
1
), pp.
97
99
.
29.
Xu
,
J. F.
,
Ji
,
W.
,
Shen
,
Z. X.
,
Li
,
W. S.
,
Tang
,
S. H.
,
Ye
,
X. R.
,
Jia
,
D. Z.
, and
Xin
,
X. Q.
,
1999
, “
Raman Spectra of CuO Nanocrystals
,”
J. Raman Spectrosc.
,
30
(
5
), pp.
413
415
.
30.
Szafraniak
,
I.
,
Połomska
,
M.
, and
Hilczer
,
B.
,
2006
, “
XRD, TEM and Raman Scattering Studies of PbTiO3 Nanopowders
,”
Cryst. Res. Technol.
,
41
(
6
), pp.
576
579
.
31.
Bernardini
,
S.
,
Bellatreccia
,
F.
,
Municchia
,
A. C.
,
Della Ventura
,
G.
, and
Sodo
,
A.
,
2019
, “
Raman Spectra of Natural Manganese Oxides
,”
J. Raman Spectrosc.
,
50
(
6
), pp.
873
888
.
32.
Gasparotto
,
A.
,
Maccato
,
C.
,
Petala
,
A.
,
Bebelis
,
S.
,
Sada
,
C.
,
Kondarides
,
D. I.
, and
Barreca
,
D.
,
2019
, “
Nanoscale Mn3O4 Thin Film Photoelectrodes Fabricated by a Vapor-Phase Route
,”
ACS Appl. Energy Mater.
,
2
(
11
), pp.
8294
8302
.
33.
Akhtar
,
M. S.
,
Bui
,
P.
,
Li
,
Z. Y.
,
Yang
,
O. B.
,
Paul
,
B. J.
,
Kin
,
S.
,
Kim
,
J.
, and
Rai
,
A. K.
,
2019
, “
Impact of Porous Mn3O4 Nanostructures on the Performance of Rechargeable Lithium Ion Battery: Excellent Capacity and Cyclability
,”
Solid State Ionics
,
336
(
8
), pp.
31
38
.
34.
Rosaiah
,
P.
,
Zhu
,
J. H.
,
Shaik
,
D. P. M. D.
,
Hussain
,
O. M.
,
Qiu
,
Y. J.
, and
Zhao
,
L.
,
2017
, “
Reduced Graphene Oxide/Mn3O4 Nanocomposite Electrodes With Enhanced Electrochemical Performance for Energy Storage Applications
,”
J. Electroanal. Chem.
,
794
(
1
), pp.
78
85
.
35.
Han
,
X. Y.
,
Cui
,
Y. P.
, and
Liu
,
H. W.
,
2020
, “
Ce-Doped Mn3O4 as High-Performance Anode Material for Lithium Ion Batteries
,”
J. Alloys Compd.
,
814
(
25
), p.
152348
.
36.
Jiang
,
Y.
,
Yue
,
J. L.
,
Guo
,
Q. B.
,
Xia
,
O. Y.
,
Zhou
,
C.
,
Feng
,
T.
,
Xu
,
J.
, and
Xia
,
H.
,
2018
, “
Highly Porous Mn3O4 Micro/Nanocuboids With In Situ Coated Carbon as Advanced Anode Material for Lithium-Ion Batteries
,”
Small
,
14
(
19
), p.
1704296
.
37.
Hou
,
H. Y.
,
Yu
,
C. Y.
,
Liu
,
X. X.
,
Yao
,
Y.
,
Liao
,
Q. S.
,
Dai
,
Z. Z.
, and
Li
,
D. D.
,
2018
, “
Waste-Loofah-Derived Carbon Micro/Nanoparticles for Lithium Ion Battery Anode
,”
Surf. Innov.
,
6
(
3
), pp.
159
166
.
38.
Kong
,
Y. Y.
,
Jiao
,
R. R.
,
Zeng
,
S. Y.
,
Cui
,
C. S.
,
Li
,
H. B.
,
Xu
,
S. L.
, and
Wang
,
L.
,
2020
, “
Study on the Synthesis of Mn3O4 Nanooctahedrons and Their Performance for Lithium Ion Batteries
,”
Nanomaterials
,
10
(
2
), p.
367
.
39.
Gu
,
X.
,
Yue
,
J.
,
Li
,
L. J.
,
Xue
,
H. T.
,
Yang
,
J.
, and
Zhao
,
X. B.
,
2015
, “
General Synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) Hierarchical Microspheres as Lithium-Ion Battery Anodes
,”
Electrochim. Acta
,
184
(
1
), pp.
250
256
.
40.
Palaniyandy
,
N.
,
Nkosi
,
F. P.
,
Raju
,
K.
, and
Ozoemena
,
K. I.
,
2019
, “
Conversion of Electrolytic MnO2 to Mn3O4 Nanowires for High-Performance Anode Materials for Lithium-Ion Batteries
,”
J. Electroanal. Chem.
,
833
(
15
), pp.
79
92
.
41.
Xu
,
L. H.
,
Chen
,
X.
,
Zeng
,
L. X.
,
Liu
,
R. P.
,
Zheng
,
C.
,
Qian
,
Q. R.
, and
Chen
,
Q. H.
,
2019
, “
Synthesis of Hierarchical Mn3O4 Microsphere Composed of Ultrathin Nanosheets and Its Excellent Long-Term Cycling Performance for Lithium-Ion Batteries
,”
J. Mater. Sci. Mater. Electron.
,
30
(
3
), pp.
3055
3060
.
42.
Wang
,
H. L.
,
Cui
,
L. F.
,
Yang
,
Y. A.
,
Sanchez Casalongue
,
H.
,
Robinson
,
J. T.
,
Liang
,
Y. Y.
,
Cui
,
Y.
, and
Dai
,
H. J.
,
2010
, “
Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries
,”
J. Am. Chem. Soc.
,
132
(
40
), pp.
13978
13980
.
43.
Zeng
,
K. W.
,
Li
,
X. H.
,
Wang
,
Z. X.
,
Guo
,
H. J.
,
Wang
,
J. X.
,
Li
,
T.
,
Pan
,
W.
, and
Shih
,
K. M.
,
2017
, “
Cave-Embedded Porous Mn2O3 Hollow Microsphere as Anode Material for Lithium Ion Batteries
,”
Electrochim. Acta
,
247
(
1
), pp.
795
802
.
44.
Li
,
S. M.
,
Li
,
B.
,
Zhong
,
Y. T.
,
Pan
,
Z. H.
,
Xu
,
M. Q.
,
Qiu
,
Y. C.
,
Huang
,
Q. M.
, and
Li
,
W. S.
,
2019
, “
Mn2O3@C Yolk-Shell Nanocubes as Lithium-Storage Anode With Suppressed Surface Electrolyte Decomposition
,”
Mater. Chem. Phys.
,
222
(
15
), pp.
256
262
.
45.
Jian
,
G. Q.
,
Xu
,
Y. H.
,
Lai
,
L. C.
,
Wang
,
C. S.
, and
Zachariah
,
M. R.
,
2014
, “
Mn3O4 Hollow Spheres for Lithium-Ion Batteries With High Rate and Capacity
,”
J. Mater. Chem. A
,
2
(
13
), pp.
4627
4632
.
46.
Jing
,
M. J.
,
Hou
,
H. S.
,
Yang
,
Y. C.
,
Zhang
,
Y.
,
Yang
,
X. M.
,
Chen
,
Q. Y.
, and
Ji
,
X. B.
,
2015
, “
Electrochemically Alternating Voltage Induced Mn3O4/Graphite Powder Composite With Enhanced Electrochemical Performances for Lithium Ion Battery
,”
Electrochim. Acta
,
155
(
1
), pp.
157
163
.
47.
Wang
,
M. Y.
,
Huang
,
Y.
,
Zhang
,
N.
,
Wang
,
K.
,
Chen
,
X. F.
, and
Ding
,
X.
,
2018
, “
A Facile Synthesis of Controlled Mn3O4 Hollow Polyhedron for High-Performance Lithium-Ion Battery Anodes
,”
Chem. Eng. J.
,
334
(
2
), pp.
2383
2391
.
48.
Duan
,
J. X.
,
Hou
,
H. Y.
,
Liu
,
X. X.
,
Yan
,
C. X.
,
Liu
,
S.
,
Meng
,
R. J.
,
Hao
,
Z. L.
,
Yao
,
Y.
, and
Liao
,
Q. S.
,
2016
, “
In Situ Ti3+-Doped TiO2 Nanotubes Anode for Lithium Ion Battery
,”
J. Porous Mater.
,
23
(
3
), pp.
837
843
.
49.
Haris
,
M.
,
Atiq
,
S.
,
Abbas
,
S. M.
,
Mahmood
,
A.
,
Ramay
,
S. M.
, and
Naseem
,
S.
,
2017
, “
Acetylene Black Coated V2O5 Nanocomposite With Stable Cyclability for Lithium-Ion Batteries Cathode
,”
J. Alloys Compd.
,
732
, pp.
518
523
.
You do not currently have access to this content.