Abstract
Graphene nanosheets are produced in mass by Hummers method, accompanied with the emission of waste acid effluent with Mn2+, which should be reasonably recycled. Herein, Mn2+ was extracted into Mn3O4 nanoparticles by oxidation precipitation. Desirably, Mn3O4 powders were the spinel crystal phase and the particle size was 100–150 nm. The reversible discharge capacities of Mn3O4 anode maintained 528 mA h/g at 0.5 A/g for 100 cycles and 423 mA h/g at 1.0 A/g for 300 cycles, with high capacity retention ratios of 93.4% and 91.1%, respectively. Obviously, this work may promote the development of the circular economy.
Issue Section:
Research Papers
Keywords:
recycling,
waste graphene production effluent,
Mn3O4 nanoparticles,
lithium ion battery,
circular economy,
batteries,
electrochemical storage
Topics:
Anodes,
Cycles,
Economics ,
Graphene,
Ions,
Lithium-ion batteries,
Nanoparticles,
X-ray diffraction,
X-rays,
Precipitation,
Oxidation,
Crystals,
Raman spectra,
Storage
References
1.
Pindar
, S.
, and Dhawan
, N.
, 2020
, “Microwave Processing of Spent Coin Cells for Recycling of Metallic Values
,” J. Cleaner Prod.
, 280
(2
), p. 124114
. 2.
Kristensen
, H. S.
, and Mosgaard
, M. A.
, 2019
, “A Review of Micro Level Indicators for a Circular Economy-Moving Away From the Three Dimensions of Sustainability?
” J. Cleaner Prod.
, 243
(1
), p. 118531
. 3.
Lin
, L.
, Peng
, H. L.
, and Liu
, Z. F.
, 2019
, “Synthesis Challenges for Graphene Industry
,” Nat. Mater.
, 18
(6
), pp. 520
–524
. 4.
Fang
, W. J.
, Hsu
, A. L.
, Song
, Y.
, and Kong
, J.
, 2015
, “A Review of Large-Area Bilayer Graphene Synthesis by Chemical Vapor Deposition
,” Nanoscale
, 7
(48
), pp. 20335
–20351
. 5.
Hernandez
, Y.
, Nicolosi
, V.
, Lotya
, M.
, Blighe
, F. M.
, Sun
, Z. Y.
, De
, S.
, McGovern
, I. T.
, et al, 2008
, “High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite
,” Nat. Nanotechnol.
, 3
(9
), pp. 563
–568
. 6.
Gao
, Y.
, Cao
, T. F.
, Cellini
, F.
, Berger
, C.
, de Heer
, W. A.
, Tosatti
, E.
, Riedo
, E.
, and Bongiorno
, A.
, 2017
, “Ultrahard Carbon Film From Epitaxial Two-Layer Graphene
,” Nat. Nanotechnol.
, 13
(2
), pp. 133
–140
. 7.
Cai
, L.
, and Yu
, G.
, 2019
, “Recent Advances in Growth and Modification of Graphene-Based Energy Materials: From Chemical Vapor Deposition to Reduction of Graphene Oxide
,” Small Methods
, 67
(7
), pp. 115
–157
. 8.
Millaleo
, R.
, Reyes-Diaz
, M.
, Ivanov
, A. G.
, Mora
, M. L.
, and Alberdi
, M.
, 2010
, “Manganese as Essential and Toxic Element for Plants: Transport, Accumulation and Resistance Mechanisms
,” J. Soil Sci. Plant Nutr.
, 10
(4
), pp. 476
–494
. 9.
Li
, J. F.
, Jia
, Y. D.
, Dong
, R. S.
, Huang
, R.
, Liu
, P. D.
, Li
, X. Y.
, Wang
, Z. Y.
, Liu
, G. D.
, and Chen
, Z. J.
, 2019
, “Advances in the Mechanisms of Plant Tolerance to Manganese Toxicity
,” Int. J. Mol. Sci.
, 20
(20
), p. 5096
. 10.
Martinez-Finley
, E. J.
, Gavin
, C. E.
, Aschner
, M.
, Aschner
, M.
, and Gunter
, T. E.
, 2013
, “Manganese Neurotoxicity and the Role of Reactive Oxygen Species
,” Free Rad. Biol. Med.
, 62
(1
), pp. 65
–75
. 11.
Lin
, Z. X.
, Yuan
, P.
, Yue
, Y. Y.
, Bai
, Z. S.
, Zhu
, H. B.
, Wang
, T. H.
, and Bao
, X. J.
, 2020
, “Selective Adsorption of Co(II)/Mn(II) by Zeolites From Purified Terephthalic Acid Wastewater Containing Dissolved Aromatic Organic Compounds and Metal Ions
,” Sci. Total Environ.
, 698
(1
), p. 134287
. 12.
Zhang
, W. S.
, Cheng
, C. Y.
, and Pranolo
, Y.
, 2010
, “Investigation of Methods for Removal and Recovery of Manganese in Hydrometallurgical Processes
,” Hydrometallurgy
, 101
(1–2
), pp. 58
–63
. 13.
Chai
, Y. Z.
, Qin
, P. F.
, Zhang
, J. C.
, Li
, T. Y.
, Dai
, Z. J.
, and Wu
, Z. B.
, 2020
, “Simultaneous Removal of Fe(II) and Mn(II) From Acid Mine Wastewater by Electro-Fenton Process
,” Process Saf. Environ.
, 143
(1
), pp. 76
–90
. 14.
Yang
, X. Y.
, Jie
, F. P.
, Wang
, B. J.
, and Bai
, Z. S.
, 2019
, “High-Efficient Synergistic Extraction of Co(II) and Mn(II) From Wastewater Via Novel Microemulsion and Annular Centrifugal Extractor
,” Sep. Purif. Technol.
, 209
(1
), pp. 997
–1006
. 15.
Miao
, S. Y.
, Chen
, G. Z.
, Delaune
, R. D.
, and Jugsujinda
, A.
, 2007
, “Partitioning and Removal of Cd and Mn Using a Simulated Mangrove Wastewater Treatment System
,” J. Environ. Sci. Health Part A
, 42
(4
), pp. 405
–411
. 16.
Li
, Y. C.
, Xu
, Z.
, Ma
, H. Q.
, and Hursthouse
, A.
, 2019
, “Removal of Manganese(II) From Acid Mine Wastewater: A Review of the Challenges and Opportunities With Special Emphasis on Mn-Oxidizing Bacteria and Microalgae
,” Water
, 11
(12
), p. 2493
. 17.
Cao
, K. Z.
, Jia
, Y. H.
, Wang
, S. D.
, Huang
, K. J.
, and Liu
, H. Q.
, 2021
, “Mn3O4 Nanoparticles Anchored on Carbon Nanotubes as Anode Material With Enhanced Lithium Storage
,” J. Alloys Compd.
, 854
(15
), p. 157179
. 18.
Peng
, T. F.
, Xu
, L. J.
, and Chen
, H. C.
, 2010
, “Preparation and Characterization of High Specific Surface Area Mn3O4 From Electrolytic Manganese Residue
,” Cent. Eur. J. Chem.
, 8
(5
), pp. 1059
–1068
. 19.
Shen
, W.
, Ren
, Y. S.
, Ma
, H. J.
, Mu
, H. X.
, Tian
, H.
, and Tang
, G. X.
, 2016
, “Investigation of Solid–Liquid Equilibria on the System Na+, K+//CI−, SO42−-H2O and Na+, K+//SO42−-H2O at 313.15 K
,” J. Chem. Eng. Data
, 61
(6
), pp. 2027
–2039
. 20.
Torres
, E.
, Lozano
, A.
, Macías
, F.
, Gomez-Arias
, A.
, Castillo
, J.
, and Ayora
, C.
, 2018
, “Passive Elimination of Sulfate and Metals From Acid Mine Drainage Using Combined Limestone and Barium Carbonate Systems
,” J. Cleaner Prod.
, 182
(1
), pp. 114
–123
. 21.
Chen
, Y. X.
, Long
, J. Y.
, Chen
, S. H.
, Xie
, Y.
, Xu
, Z. F.
, Ning
, Z. P.
, Zhang
, G. S.
, et al, 2021
, “Multi-step Purification of Electrolytic Manganese Residue Leachate Using Hydroxide Sedimentation, Struvite Precipitation, Chlorination and Coagulation: Advanced Removal of Manganese, Ammonium, and Phosphate
,” Sci. Total Environ.
, 805
(20
), p. 150237
. 22.
Dai
, Z. P.
, Hou
, H. Y.
, Liu
, X. X.
, Yao
, Y.
, Yu
, C. Y.
, and Li
, D. D.
, 2019
, “Exploiting the Non-Medical Value of Waste Expired Aminophylline for Lithium Ion Battery Anode
,” Surf. Innov.
, 7
(1
), pp. 26
–34
. 23.
Seyedahmadian
, M.
, Houshyarazar
, S.
, and Amirshaghaghi
, A.
, 2013
, “Synthesis and Characterization of Nanosized of Spinel LiMn2O4 Via Sol–Gel and Freeze Drying Methods
,” Bull. Korean Chem. Soc.
, 34
(2
), pp. 622
–628
. 24.
Kirillov
, S. A.
, Aleksandrova
, V. S.
, Lisnycha
, T. V.
, Dzanashvivl
, D. I.
, Khainakov
, S. A.
, Garcia
, J. R.
, Visloguzova
, N. M.
, and Pendelyuk
, O. I.
, 2009
, “Oxidation of Synthetic Hausmannite (Mn3O4) to Manganite (MnOOH)
,” J. Mol. Struct.
, 928
(1–3
), pp. 89
–94
. 25.
Rani
, B. J.
, Ravina
, M.
, Ravi
, G.
, Ravichandran
, S.
, Ganesh
, V.
, and Yuvakkumar
, R.
, 2018
, “Synthesis and Characterization of Hausmannite (Mn3O4) Nanostructures
,” Surf. Interfaces
, 11
(3
), pp. 28
–36
. 26.
Zhang
, L.
, Wang
, S.
, Ding
, Y.
, Lv
, L. R.
, Chen
, Y. T.
, Xu
, D. K.
, and Wang
, S. D.
, 2018
, “Facile Synthesis of Gamma-MnOOH Nanorods Via a Redox Precipitation Route Using Oxygen and Their Thermal Conversion
,” Chemistryselect
, 3
(42
), pp. 11908
–11913
. 27.
Post
, J. E.
, Mckeown
, D. A.
, and Heaney
, P. J.
, 2020
, “Raman Spectroscopy Study of Manganese Oxides: Tunnel Structures
,” Am. Mineral.
, 105
(8
), pp. 1175
–1190
. 28.
Mironova-Ulmane
, N.
, Kuzmin
, A.
, and Grube
, M.
, 2009
, “Raman and Infrared Spectromicroscopy of Manganese Oxides
,” J. Alloys Compd.
, 480
(1
), pp. 97
–99
. 29.
Xu
, J. F.
, Ji
, W.
, Shen
, Z. X.
, Li
, W. S.
, Tang
, S. H.
, Ye
, X. R.
, Jia
, D. Z.
, and Xin
, X. Q.
, 1999
, “Raman Spectra of CuO Nanocrystals
,” J. Raman Spectrosc.
, 30
(5
), pp. 413
–415
. 30.
Szafraniak
, I.
, Połomska
, M.
, and Hilczer
, B.
, 2006
, “XRD, TEM and Raman Scattering Studies of PbTiO3 Nanopowders
,” Cryst. Res. Technol.
, 41
(6
), pp. 576
–579
. 31.
Bernardini
, S.
, Bellatreccia
, F.
, Municchia
, A. C.
, Della Ventura
, G.
, and Sodo
, A.
, 2019
, “Raman Spectra of Natural Manganese Oxides
,” J. Raman Spectrosc.
, 50
(6
), pp. 873
–888
. 32.
Gasparotto
, A.
, Maccato
, C.
, Petala
, A.
, Bebelis
, S.
, Sada
, C.
, Kondarides
, D. I.
, and Barreca
, D.
, 2019
, “Nanoscale Mn3O4 Thin Film Photoelectrodes Fabricated by a Vapor-Phase Route
,” ACS Appl. Energy Mater.
, 2
(11
), pp. 8294
–8302
. 33.
Akhtar
, M. S.
, Bui
, P.
, Li
, Z. Y.
, Yang
, O. B.
, Paul
, B. J.
, Kin
, S.
, Kim
, J.
, and Rai
, A. K.
, 2019
, “Impact of Porous Mn3O4 Nanostructures on the Performance of Rechargeable Lithium Ion Battery: Excellent Capacity and Cyclability
,” Solid State Ionics
, 336
(8
), pp. 31
–38
. 34.
Rosaiah
, P.
, Zhu
, J. H.
, Shaik
, D. P. M. D.
, Hussain
, O. M.
, Qiu
, Y. J.
, and Zhao
, L.
, 2017
, “Reduced Graphene Oxide/Mn3O4 Nanocomposite Electrodes With Enhanced Electrochemical Performance for Energy Storage Applications
,” J. Electroanal. Chem.
, 794
(1
), pp. 78
–85
. 35.
Han
, X. Y.
, Cui
, Y. P.
, and Liu
, H. W.
, 2020
, “Ce-Doped Mn3O4 as High-Performance Anode Material for Lithium Ion Batteries
,” J. Alloys Compd.
, 814
(25
), p. 152348
. 36.
Jiang
, Y.
, Yue
, J. L.
, Guo
, Q. B.
, Xia
, O. Y.
, Zhou
, C.
, Feng
, T.
, Xu
, J.
, and Xia
, H.
, 2018
, “Highly Porous Mn3O4 Micro/Nanocuboids With In Situ Coated Carbon as Advanced Anode Material for Lithium-Ion Batteries
,” Small
, 14
(19
), p. 1704296
. 37.
Hou
, H. Y.
, Yu
, C. Y.
, Liu
, X. X.
, Yao
, Y.
, Liao
, Q. S.
, Dai
, Z. Z.
, and Li
, D. D.
, 2018
, “Waste-Loofah-Derived Carbon Micro/Nanoparticles for Lithium Ion Battery Anode
,” Surf. Innov.
, 6
(3
), pp. 159
–166
. 38.
Kong
, Y. Y.
, Jiao
, R. R.
, Zeng
, S. Y.
, Cui
, C. S.
, Li
, H. B.
, Xu
, S. L.
, and Wang
, L.
, 2020
, “Study on the Synthesis of Mn3O4 Nanooctahedrons and Their Performance for Lithium Ion Batteries
,” Nanomaterials
, 10
(2
), p. 367
. 39.
Gu
, X.
, Yue
, J.
, Li
, L. J.
, Xue
, H. T.
, Yang
, J.
, and Zhao
, X. B.
, 2015
, “General Synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) Hierarchical Microspheres as Lithium-Ion Battery Anodes
,” Electrochim. Acta
, 184
(1
), pp. 250
–256
. 40.
Palaniyandy
, N.
, Nkosi
, F. P.
, Raju
, K.
, and Ozoemena
, K. I.
, 2019
, “Conversion of Electrolytic MnO2 to Mn3O4 Nanowires for High-Performance Anode Materials for Lithium-Ion Batteries
,” J. Electroanal. Chem.
, 833
(15
), pp. 79
–92
. 41.
Xu
, L. H.
, Chen
, X.
, Zeng
, L. X.
, Liu
, R. P.
, Zheng
, C.
, Qian
, Q. R.
, and Chen
, Q. H.
, 2019
, “Synthesis of Hierarchical Mn3O4 Microsphere Composed of Ultrathin Nanosheets and Its Excellent Long-Term Cycling Performance for Lithium-Ion Batteries
,” J. Mater. Sci. Mater. Electron.
, 30
(3
), pp. 3055
–3060
. 42.
Wang
, H. L.
, Cui
, L. F.
, Yang
, Y. A.
, Sanchez Casalongue
, H.
, Robinson
, J. T.
, Liang
, Y. Y.
, Cui
, Y.
, and Dai
, H. J.
, 2010
, “Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries
,” J. Am. Chem. Soc.
, 132
(40
), pp. 13978
–13980
. 43.
Zeng
, K. W.
, Li
, X. H.
, Wang
, Z. X.
, Guo
, H. J.
, Wang
, J. X.
, Li
, T.
, Pan
, W.
, and Shih
, K. M.
, 2017
, “Cave-Embedded Porous Mn2O3 Hollow Microsphere as Anode Material for Lithium Ion Batteries
,” Electrochim. Acta
, 247
(1
), pp. 795
–802
. 44.
Li
, S. M.
, Li
, B.
, Zhong
, Y. T.
, Pan
, Z. H.
, Xu
, M. Q.
, Qiu
, Y. C.
, Huang
, Q. M.
, and Li
, W. S.
, 2019
, “Mn2O3@C Yolk-Shell Nanocubes as Lithium-Storage Anode With Suppressed Surface Electrolyte Decomposition
,” Mater. Chem. Phys.
, 222
(15
), pp. 256
–262
. 45.
Jian
, G. Q.
, Xu
, Y. H.
, Lai
, L. C.
, Wang
, C. S.
, and Zachariah
, M. R.
, 2014
, “Mn3O4 Hollow Spheres for Lithium-Ion Batteries With High Rate and Capacity
,” J. Mater. Chem. A
, 2
(13
), pp. 4627
–4632
. 46.
Jing
, M. J.
, Hou
, H. S.
, Yang
, Y. C.
, Zhang
, Y.
, Yang
, X. M.
, Chen
, Q. Y.
, and Ji
, X. B.
, 2015
, “Electrochemically Alternating Voltage Induced Mn3O4/Graphite Powder Composite With Enhanced Electrochemical Performances for Lithium Ion Battery
,” Electrochim. Acta
, 155
(1
), pp. 157
–163
. 47.
Wang
, M. Y.
, Huang
, Y.
, Zhang
, N.
, Wang
, K.
, Chen
, X. F.
, and Ding
, X.
, 2018
, “A Facile Synthesis of Controlled Mn3O4 Hollow Polyhedron for High-Performance Lithium-Ion Battery Anodes
,” Chem. Eng. J.
, 334
(2
), pp. 2383
–2391
. 48.
Duan
, J. X.
, Hou
, H. Y.
, Liu
, X. X.
, Yan
, C. X.
, Liu
, S.
, Meng
, R. J.
, Hao
, Z. L.
, Yao
, Y.
, and Liao
, Q. S.
, 2016
, “In Situ Ti3+-Doped TiO2 Nanotubes Anode for Lithium Ion Battery
,” J. Porous Mater.
, 23
(3
), pp. 837
–843
. 49.
Haris
, M.
, Atiq
, S.
, Abbas
, S. M.
, Mahmood
, A.
, Ramay
, S. M.
, and Naseem
, S.
, 2017
, “Acetylene Black Coated V2O5 Nanocomposite With Stable Cyclability for Lithium-Ion Batteries Cathode
,” J. Alloys Compd.
, 732
, pp. 518
–523
. Copyright © 2022 by ASME
You do not currently have access to this content.