Abstract

Neural network models have a long history in fuel cell and battery modeling. With the recent advent of deep learning, there is potential for further improvements in these models. Conversely, deep learning is primarily designed for image detection and classification using large data sets and its performance on typical regression tasks in fuel cell and battery modeling remains largely unexplored. In this article, we present a new method for applying deep learning to general vector outputs from battery and fuel cell models and investigate the use of different deep learning architectures. We compare these methods to equivalent Gaussian process (GP) models on a range of regression tasks. We further provide the first rigorous error and asymptotic analysis of the multivariate GP model. For scalar outputs, deep networks are found to be less accurate on small data sets, but for large data sets, convolutional and recurrent networks are able to marginally exceed the accuracy of GP models.

References

1.
Shah
,
A. A.
,
Luo
,
K.
,
Ralph
,
T. R.
, and
Walsh
,
F. C.
,
2011
, “
Recent Trends and Developments in Polymer Electrolyte Membrane Fuel Cell Modelling
,”
Electrochim. Acta
,
56
(
11
), pp.
3731
3757
.
2.
Ramadesigan
,
V.
,
Northrop
,
P. W. C.
,
De
,
S.
,
Santhanagopalan
,
S.
,
Braatz
,
R. D.
, and
Subramanian
,
V. R.
,
2012
, “
Modeling and Simulation of Lithium-Ion Batteries From a Systems Engineering Perspective
,”
J. Electrochem. Soc.
,
159
(
3
), pp.
R31
R45
.
3.
Xing
,
W.
,
Razi
,
M.
,
Kirby
,
R. M.
,
Sun
,
K.
, and
Shah
,
A. A.
,
2020
, “
Greedy Nonlinear Autoregression for Multifidelity Computer Models at Different Scales
,”
Energy AI
,
1
, p.
100012
.
4.
Cai
,
L.
, and
White
,
R. E.
,
2010
, “
An Efficient Electrochemical-Thermal Model for a Lithium-Ion Cell by Using the Proper Orthogonal Decomposition Method
,”
J. Electrochem. Soc.
,
157
(
11
), pp.
A1188
A1195
.
5.
Moccoteguy
,
P.
,
Pellegrino
,
S.
,
Ludwig
,
B.
,
Esposito
,
A.
,
Iwanschitz
,
B.
, and
Mai
,
A.
,
2019
, “
A Novel Approach to Analyse Incomplete Design of Experiments—Application to the Study of the Influence of Operational Parameters on the Performance of a Solid Oxide Fuel Cell Based Micro-Combined Heat and Power System
,”
Int. J. Hydrogen Energy
,
44
(
2
), pp.
1151
1165
.
6.
Zhang
,
W.
,
Cho
,
C.
,
Piao
,
C.
, and
Choi
,
H.
,
2016
, “
Sobol’s Sensitivity Analysis for a Fuel Cell Stack Assembly Model With the Aid of Structure-Selection Techniques
,”
J. Power Sources
,
301
, pp.
1
10
.
7.
Vazquez-Arenas
,
J.
,
Gimenez
,
L. E.
,
Fowler
,
M.
,
Han
,
T.
, and
Chen
,
S.
,
2014
, “
A Rapid Estimation and Sensitivity Analysis of Parameters Describing the Behavior of Commercial Li-Ion Batteries Including Thermal Analysis
,”
Energy Convers. Manage.
,
87
, pp.
472
482
.
8.
Wang
,
X.
,
Li
,
M.
,
Liu
,
Y.
,
Sun
,
W.
,
Song
,
X.
, and
Zhang
,
J.
,
2017
, “
Surrogate Based Multidisciplinary Design Optimization of Lithium-Ion Battery Thermal Management System in Electric Vehicles
,”
Struct. Multidiscip. Optim.
,
56
(
6
), pp.
1555
1570
.
9.
Radaideh
,
M. I.
,
Radaideh
,
M. I.
, and
Kozlowski
,
T.
,
2020
, “
Design Optimization Under Uncertainty of Hybrid Fuel Cell Energy Systems for Power Generation and Cooling Purposes
,”
Int. J. Hydrogen Energy
,
45
(
3
), pp.
2224
2243
.
10.
Du
,
W.
,
2013
, “
Multi-Scale Modeling, Surrogate-Based Analysis, and Optimization of Lithium-Ion Batteries for Vehicle Applications
,” Ph.D. thesis,
University of Michigan
,
MI
11.
Maheshwari
,
A.
,
Dumitrescu
,
M. A.
,
Destro
,
M.
, and
Santarelli
,
M.
,
2016
, “
Inverse Parameter Determination in the Development of an Optimized Lithium Iron PhosphateaGraphite Battery Discharge Model
,”
J. Power Sources
,
307
, pp.
160
172
.
12.
Chun
,
H.
,
Kim
,
J.
, and
Han
,
S.
,
2019
, “
Parameter Identification of n Electrochemical Lithium-Ion Battery Model With Convolutional Neural Network
,”
IFAC-PapersOnLine
,
52
(
4
), pp.
129
134
, IFAC Workshop on Control of Smart Grid and Renewable Energy Systems CSGRES 2019.
13.
Dolenc
,
B.
,
Vrecko
,
D.
,
Juricic
,
D.
,
Pohjoranta
,
A.
, and
Pianese
,
C.
,
2017
, “
Online Gas Composition Estimation in Solid Oxide Fuel Cell Systems With Anode Off-Gas Recycle Configuration
,”
J. Power Sources
,
343
, pp.
246
253
.
14.
Peksen
,
M.
,
Blum
,
L.
, and
Stolten
,
D.
,
2012
, “
Optimisation of a Solid Oxide Fuel Cell Reformer Using Surrogate Modelling, Design of Experiments and Computational Fluid Dynamics
,”
Int. J. Hydrogen Energy
,
37
(
17
), pp.
12540
12547
.
15.
Pohjoranta
,
A.
,
Halinen
,
M.
,
Pennanen
,
J.
, and
Kiviaho
,
J.
,
2015
, “
Solid Oxide Fuel Cell Stack Temperature Estimation With Data-Based Modeling—Designed Experiments and Parameter Identification
,”
J. Power Sources
,
277
(
1
), pp.
464
473
.
16.
Miao
,
J.-M.
,
Cheng
,
S.-J.
, and
Wu
,
S.-J.
,
2011
, “
Metamodel Based Design Optimization Approach in Promoting the Performance of Proton Exchange Membrane Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
23
), pp.
15283
15294
.
17.
Lobato
,
J.
,
Canizaresa
,
P.
,
Rodrigo
,
M. A.
,
Linares
,
J. J.
,
Piuleac
,
C. G.
, and
Curteanu
,
S.
,
2009
, “
The Neural Networks Based Modeling of a Polybenzimidazole-Based Polymer Electrolyte Membrane Fuel Cell: Effect of Temperature
,”
J. Power Sources
,
192
(
1
), pp.
190
194
.
18.
Chang
,
K.-Y.
,
2011
, “
The Optimal Design for PEMFC Modeling Based on Taguchi Method and Genetic Algorithm Neural Networks
,”
Int. J. Hydrogen Energy
,
36
(
21
), pp.
13683
13694
.
19.
Razbani
,
O.
, and
Assadi
,
M.
,
2014
, “
Artificial Neural Network Model of a Short Stack Solid Oxide Fuel Cell Based on Experimental Data
,”
J. Power Sources
,
246
, pp.
581
586
.
20.
Pourrahmani
,
H.
,
Siavashi
,
M.
, and
Moghimi
,
M.
,
2019
, “
Design Optimization and Thermal Management of the PEMFC Using Artificial Neural Networks
,”
Energy
,
182
(
7
), pp.
443
459
.
21.
Ding
,
R.
,
Ding
,
Y.
,
Zhang
,
H.
,
Wang
,
R.
,
Xu
,
Z.
,
Liu
,
Y.
,
Yin
,
W.
,
Wang
,
J.
,
Li
,
J.
, and
Liu
,
J.
,
2021
, “
Applying Machine Learning to Boost the Development of High-Performance Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells
,”
J. Mater. Chem. A
,
9
(
11
), pp.
6841
6850
.
22.
Yuan
,
Z.
,
Wang
,
W.
,
Wang
,
H.
, and
Ashourian
,
M.
,
2020
, “
Parameter Identification of PEMFC Based on Convolutional Neural Network Optimized by Balanced Deer Hunting Optimization Algorithm
,”
Energy Reports
,
6
(
44
), pp.
1572
1580
.
23.
Huo
,
W.
,
Li
,
W.
,
Zhang
,
Z.
,
Sun
,
C.
,
Zhou
,
F.
, and
Gong
,
G.
,
2021
, “
Performance Prediction of Protonexchange Membrane Fuel Cell Based on Convolutional Neural Network and Random Forest Feature Selection
,”
Energy Convers. Manage.
,
243
(
2
), p.
114367
.
24.
Ma
,
R.
,
Yang
,
T.
,
Breaz
,
E.
,
Li
,
Z.
,
Briois
,
P.
, and
Gao
,
F.
,
2018
, “
Data-Driven Proton Exchange Membrane Fuel Cell Degradation Predication Through Deep Learning Method
,”
Appl. Energy
,
231
, pp.
102
115
.
25.
Wang
,
F.
,
Cheng
,
X.
, and
Hsiao
,
K.
,
2020
, “
Stacked Long Short-Term Memory Model for Proton Exchange Membrane Fuel Cell Systems Degradation
,”
J. Power Sources
,
448
(
6
), p.
227591
.
26.
Li
,
W.
,
Sengupta
,
N.
,
Dechent
,
P.
,
Howey
,
D.
,
Annaswamy
,
A.
, and
Uwe Sauer
,
D.
,
2021
, “
One-Shot Battery Degradation Trajectory Prediction With Deep Learning
,”
J. Power Sources
,
506
(
1
), p.
230024
.
27.
Zhang
,
X.
,
Zhou
,
J.
, and
Chen
,
W.
,
2020
, “
Data-Driven Fault Diagnosis for PEMFC Systems of Hybrid Tram Based on Deep Learning
,”
Int. J. Hydrogen Energy
,
45
(
24
), pp.
13483
13495
.
28.
Liu
,
J.
,
Li
,
Q.
,
Yang
,
H.
,
Han
,
Y.
,
Jiang
,
S.
, and
Chen
,
W.
,
2019
, “
Sequence Fault Diagnosis for PEMFC Water Management Subsystem Using Deep Learning With T-SNE
,”
IEEE Access
,
7
, pp.
92009
92019
.
29.
Li
,
H.
,
Xu
,
B.
,
Du
,
C.
, and
Yang
,
Y.
,
2020
, “
Performance Prediction and Power Density Maximization of a Proton Exchange Membrane Fuel Cell Based on Deep Belief Network
,”
J. Power Sources
,
461
, p.
228154
.
30.
Liu
,
X.
,
Zhou
,
S.
,
Yan
,
Z.
,
Zhong
,
Z.
,
Shikazono
,
N.
, and
Hara
,
S.
,
2022
, “
Correlation Between Microstructures and Macroscopic Properties of Nickel/yttria-Stabilized Zirconia (ni-ysz) Anodes: Meso-Scale Modeling and Deep Learning With Convolutional Neural Networks
,”
Energy AI
,
7
, p.
100122
.
31.
Richardson
,
R. R.
,
Osborne
,
M. A.
, and
Howey
,
D. A.
,
2017
, “
Gaussian Process Regression for Forecasting Battery State of Health
,”
J. Power Sources
,
357
(
23
), pp.
209
219
.
32.
Yang
,
D.
,
Zhang
,
X.
,
Pan
,
R.
,
Wang
,
Y.
, and
Chen
,
Z.
,
2018
, “
A Novel Gaussian Process Regression Model for State-of-Health Estimation of Lithium-Ion Battery Using Charging Curve
,”
J. Power Sources
,
384
(
1
), pp.
387
395
.
33.
Tagade
,
P.
,
Hariharan
,
K. S.
,
Ramachandran
,
S.
,
Khandelwal
,
A.
,
Naha
,
A.
,
Kolake
,
S. M.
, and
Han
,
S. H.
,
2020
, “
Deep Gaussian Process Regression for Lithium-Ion Battery Health Prognosis and Degradation Mode Diagnosis
,”
J. Power Sources
,
445
(
15
), p.
227281
.
34.
Conti
,
S.
, and
O’Hagan
,
A.
,
2010
, “
Bayesian Emulation of Complex Multi-Output and Dynamic Computer Models
,”
J. Stat. Plann. Inference
,
140
(
3
), pp.
640
651
.
35.
Higdon
,
D.
,
Gattiker
,
J.
,
Williams
,
B.
, and
Rightley
,
M.
,
2008
, “
Computer Model Calibration Using High-Dimensional Output
,”
J. Am. Stat. Assoc.
,
103
(
482
), pp.
570
583
.
36.
Xing
,
W. W.
,
Triantafyllidis
,
V.
,
Shah
,
A. A.
,
Nair
,
P. B.
, and
Zabaras
,
N.
,
2016
, “
Manifold Learning for the Emulation of Spatial Fields From Computational Models
,”
J. Comput. Phys.
,
326
, pp.
666
690
.
37.
Shah
,
A. A.
,
2017
, “
Surrogate Modeling for Spatially Distributed Fuel Cell Models With Applications to Uncertainty Quantification
,”
ASME J. Electrochem. Energy Convers. Storage
,
14
(
1
), p.
011006
.
38.
Xing
,
W. W.
,
Yu
,
F.
,
Leung
,
P. K.
,
Li
,
X.
,
Wang
,
P.
, and
Shah
,
A. A.
,
2021
, “
A New Multi-Task Learning Framework for Fuel Cell Model Outputs in High-Dimensional Spaces
,”
J. Power Sources
,
482
(
3
), p.
228930
.
39.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
, http://www.deeplearningbook.org
40.
Shawe-Taylor
,
J.
,
Williams
,
C. K. I.
,
Cristianini
,
N.
, and
Kandola
,
J.
,
2005
, “
On the Eigenspectrum of the Gram Matrix and the Generalization Error of Kernel-PCA
,”
IEEE Trans. Inf. Theory
,
51
(
7
), pp.
2510
2522
.
41.
Blanchard
,
G.
,
Bousquet
,
O.
, and
Zwald
,
L.
,
2007
, “
Statistical Properties of Kernel Principal Component Analysis
,”
Mach. Learn.
,
66
(
2–3
), pp.
259
294
.
42.
Reiß
,
M.
, and
Wahl
,
M.
,
2020
, “
Nonasymptotic Upper Bounds for the Reconstruction Error of PCA
,”
Ann. Stat.
,
48
(
2
), pp.
1098
1123
.
43.
Kanagawa
,
M.
,
Hennig
,
P.
,
Sejdinovic
,
D.
, and
Sriperumbudur
,
B. K.
,
2018
, “
Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences
,”
arXiv preprint arXiv:1807.02582.
44.
Schaback
,
R.
,
1999
, “
Improved Error Bounds for Scattered Data Interpolation by Radial Basis Functions
,”
Math. Comput.
,
68
(
225
), pp.
201
216
.
45.
Mendelson
,
S.
,
2006
, “
Improving the Sample Complexity Using Global Data
,”
IEEE Trans. Inf. Theory
,
48
(
7
), pp.
1977
1991
.
46.
Srinivas
,
N.
,
Krause
,
A.
,
Kakade
,
S. M.
, and
Seeger
,
M. W.
,
2012
, “
Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting
,”
IEEE Trans. Inf. Theory
,
58
(
5
), pp.
3250
3265
.
47.
Chowdhury
,
S.
, and
Gopalan
,
A.
,
2017
, “
On Kernelized Multi-Armed Bandits
,”
Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research
,
International Convention Centre, Sydney, Australia
,
Aug. 6–11
,
D.
Precup
, and
Y. W.
Teh
, eds., pp.
844
853
.
48.
De Freitas
,
N.
,
Smola
,
A. J.
, and
Zoghi
,
M.
,
2012
, “
Exponential Regret Bounds for Gaussian Process Bandits With Deterministic Observations
,”
Proceedings of the 29th International Conference on Machine Learning, ICML’12
,
Edinburgh, Scotland
,
June
, pp.
955
962
.
49.
Wang
,
W.
,
Tuo
,
R.
, and
Wu
,
C. F. J.
,
2020
, “
On Prediction Properties of Kriging: Uniform Error Bounds and Robustness
,”
J. Am. Stat. Assoc.
,
115
(
530
), pp.
920
930
.
50.
Lederer
,
A.
,
Umlauft
,
J.
, and
Hirche
,
S.
,
2019
, “
Uniform Error Bounds for Gaussian Process Regression With Application to Safe Control
,”
Conference on Neural Information Processing Systems (NIPS)
,
Vancouver, Canada
,
Dec. 10–12
, pp.
659
669
.
51.
Xing
,
W. W.
,
Shah
,
A. A.
,
Wang
,
P.
,
Zhe
,
S.
,
Fu
,
Q.
, and
Kirby
,
R. M.
,
2021
, “
Residual Gaussian Process: A Tractable Nonparametric Bayesian Emulator for Multi-Fidelity Simulations
,”
Appl. Math. Model.
,
97
(
3
), pp.
36
56
.
52.
Adler
,
R. J.
, and
Taylor
,
J. E.
,
2009
,
Random Fields and Geometry
,
Springer Science & Business Media
.
53.
Doyle
,
M.
,
Newman
,
J.
,
Gozdz
,
A. S.
,
Schmutz
,
C. N.
, and
Tarascon
,
J.
,
1996
, “
Comparison of Modeling Predictions With Experimental Data From Plastic Lithium Ion Cells
,”
J. Electrochem. Soc.
,
143
(
6
), pp.
1890
1903
.
54.
Shah
,
A. A.
,
Tangirala
,
R.
,
Singh
,
R.
,
Wills
,
R. G. A.
, and
Walsh
,
F. C.
,
2011
, “
A dynamic Uunit Cell Model for the All-Vanadium Flow Battery
,”
J. Electrochem. Soc.
,
158
(
6
), p.
A671
.
You do not currently have access to this content.