Abstract

A lithium-rich layered oxide cathode material (Li1.2[Mn0.54Ni0.13Co0.13]O2) was synthesized using solution combustion synthesis, and the electrochemical effects of co-doping with vanadium and titanium were studied. Materials analysis showed that layered oxides with an α-NaFeO2 structure, spherical morphology, and particle size distribution between 0.4 and 1 µm were synthesized. Electrochemical experiments (charge–discharge tests) also indicated that the presence of vanadium in the cathode structure increases its specific capacity to 257.6 mAh/g and improves rate capability and cyclic performance. Increasing the amount of titanium in the cathode improves cyclability; however, it also decreases specific capacity. The latter occurs because titanium is not electrochemically active, meaning it does not participate in redox reactions. Also, increasing the amount of titanium beyond 0.02 mol leads to a considerable decrease in the rate capability.

References

1.
Lin
,
C.
,
Zhang
,
Y.
,
Chen
,
L.
,
Lei
,
Y.
,
Ou
,
J.
,
Guo
,
Y.
,
Yuan
,
H.
, and
Xiao
,
D.
,
2015
, “
Hydrogen Peroxide Assisted Synthesis of LiNi1/3Co1/3Mn1/3O2 as High-Performance Cathode for Lithium-Ion Batteries
,”
J. Power Sources
,
280
, pp.
263
271
.
2.
Jo
,
M.
,
Jeong
,
S.
, and
Cho
,
J.
,
2010
, “
High Power LiCoO2 Cathode Materials With Ultraenergy Density for Li-Ion Cells
,”
Electrochem. Commun.
,
12
(
7
), pp.
992
995
.
3.
Ohzuku
,
T.
, and
Makimura
,
Y.
,
2001
, “
Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries
,”
Chem. Lett.
,
30
(
7
), pp.
642
643
.
4.
Su
,
L.
,
Jing
,
Y.
, and
Zhou
,
Z.
,
2011
, “
Li ion Battery Materials With Core–Shell Nanostructures
,”
Nanoscale
,
3
(
10
), pp.
3967
3983
.
5.
Kraytsberg
,
A.
, and
Ein-Eli
,
Y.
,
2012
, “
Higher, a Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries
,”
Adv. Energy Mater.
,
2
(
8
), pp.
922
939
.
6.
Kam
,
K. C.
, and
Doeff
,
M. M.
,
2011
, “
Aliovalent Titanium Substitution in Layered Mixed Li Ni-Mn-Co Oxides for Lithium Battery Applications
,”
J. Mater. Chem.
,
21
(
27
), pp.
9991
9993
.
7.
Cho
,
Y.
,
Oh
,
P.
, and
Cho
,
J.
,
2013
, “
A New Type of Protective Surface Layer for High-Capacity Ni-Based Cathode Materials: Nano Scaled Surface Pillaring Layer
,”
Nano Lett.
,
13
(
3
), pp.
1145
1152
.
8.
Jung
,
S. K.
,
Gwon
,
H.
,
Hong
,
J.
,
Park
,
K. Y.
,
Seo
,
D. H.
,
Kim
,
H.
,
Hyun
,
J.
,
Yang
,
W.
, and
Kang
,
K.
,
2014
, “
Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries
,”
Adv. Energy Mater.
,
4
(
1
), pp.
1
7
.
9.
Kang
,
S.
,
Li
,
B.
,
Qin
,
H.
,
Fang
,
Y.
,
Li
,
X.
, and
Wang
,
Y.
,
2015
, “
Simple Solid-State Method for Synthesis of Li[Li0.20Mn0.534Ni0.133Co0.133]O2 Cathode Material With Improved Electrochemical Performance in Lithium-Ion Batteries
,”
J. Solid State Electrochem.
,
19
(
2
), pp.
525
531
.
10.
Xiang
,
X. D.
, and
Li
,
W.
,
2014
, “
Self-Directed Chemical Synthesis of Lithium-Rich Layered Oxide Li[Li0.2Ni0.2Mn0.6]O2 With Tightly Interconnected Particles as Cathode of Lithium ion Batteries With Improved Rate Capability
,”
Electrochim. Acta
,
127
, pp.
259
265
.
11.
Lu
,
Z. H.
,
Beaulieu
,
L. Y.
,
Donaberger
,
R. A.
,
Thomas
,
C. L.
, and
Dahn
,
J. R.
,
2002
, “
Synthesis, structure, and Electrochemical Behavior of Li[NixLi1/3–2x/3Mn2/3-x/3]O2
,”
J. Electrochem. Soc.
,
149
, pp.
A778
A791
.
12.
Thackeray
,
M. M.
,
Kang
,
S. H.
,
Johnson
,
C. S.
,
Vaughey
,
J. T.
,
Benedek
,
R.
, and
Hackney
,
S. A.
,
2007
, “
Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) Electrodes for Lithium-Ion Batteries
,”
J. Mater. Chem.
,
17
(
30
), pp.
3112
3125
.
13.
Sun
,
Y. K.
,
Lee
,
M. J.
,
Yoon
,
C. S.
,
Hassoun
,
J.
,
Amine
,
K.
, and
Scrosati
,
B.
,
2012
, “
Batteries: The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries
,”
Adv. Mater.
,
24
(
9
), pp.
1192
1198
.
14.
Li
,
L.
,
Xu
,
M.
,
Chen
,
Z.
,
Zhou
,
X.
,
Zhang
,
Q.
,
Zhu
,
H.
,
Wu
,
C.
, and
Zhang
,
K.
,
2015
, “
High-Performance Lithium-Rich Layered Oxide Materials: Effects of Chelating Agents on Microstructure and Electrochemical Properties
,”
Electrochim. Acta
,
174
, pp.
446
455
.
15.
Shi
,
S. J.
,
Tu
,
J. P.
,
Tang
,
Y. Y.
,
Yu
,
Y. X.
,
Zhang
,
Y. Q.
,
Wang
,
X. L.
, and
Gu
,
C. D.
,
2013
, “
Combustion Synthesis and Electrochemical Performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 With Improved Rate Capability
,”
J. Power Sources
,
228
, pp.
14
23
.
16.
Wei
,
Y. J.
,
Nikolowski
,
K.
,
Zhan
,
S. Y.
,
Ehrenberg
,
H.
,
Oswald
,
S.
,
Chen
,
G.
,
Wang
,
C. Z.
, and
Chen
,
H.
,
2009
, “
Electrochemical Kinetics and Cycling Performance of Nano Li[Li0.23Co0.3Mn0.47]O2 Cathode Material for Lithium Ion Batteries
,”
Electrochem. Commun.
,
11
(
10
), pp.
2008
2011
.
17.
Wang
,
J.
,
Yang
,
J.
,
Zhang
,
Y.
,
Li
,
Y.
,
Banis
,
M. N.
,
Li
,
X.
,
Li
,
R.
,
Sun
,
X.
, and
Liang
,
G.
,
2013
, “
Interaction of Carbon Coating on LiFePO4: A Local Visualization Study of the Influence of Impurity Phases
,”
Adv. Funct. Mater.
,
23
(
7
), pp.
806
814
.
18.
He
,
Z.
,
Wang
,
Z.
,
Chen
,
H.
,
Huang
,
Z.
,
Li
,
X.
,
Guo
,
H.
, and
Wang
,
R.
,
2015
, “
Electrochemical Performance of Zirconium Doped Lithium Rich Layered Li1.2Mn0.54Ni0.13Co0.13O2 Oxide With Porous Hollow Structure
,”
J. Power Sources
,
299
, pp.
334
341
.
19.
Lee
,
S. H.
,
Moon
,
J. S.
,
Lee
,
M. S.
,
Yu
,
T. H.
,
Kim
,
H.
, and
Park
,
B. M.
,
2015
, “
Enhancing Phase Stability and Kinetics of Lithium-Rich Layered Oxide for an Ultra-High Performing Cathode in Li-Ion Batteries
,”
J. Power Sources
,
281
, pp.
77
84
.
20.
Li
,
L.
,
Chen
,
Z.
,
Zhang
,
Q.
,
Xu
,
M.
,
Zhou
,
X.
,
Zhu
,
H.
, and
Zhang
,
K.
,
2015
, “
A Hydrolysis Hydrothermal Route for the Synthesis of Ultrathin LiAlO2-Inlaid LiNi0.5Co0.2Mn0.3O2 as a High-Performance Cathode Material for Lithium Ion Batteries
,”
J. Mater. Chem. A
,
3
(
2
), pp.
894
904
.
21.
Li
,
L.
,
Chen
,
Z.
,
Song
,
L.
,
Xu
,
M.
,
Zhu
,
H.
,
Gong
,
L.
, and
Zhang
,
K.
,
2015
, “
Characterization and Electrochemical Performance of Lithium-Active Titanium Dioxide Inlaid LiNi0.5Co0.2Mn0.3O2 Material Prepared by Lithium Residue-Assisted Method
,”
J. Alloys Compd.
,
638
, pp.
77
82
.
22.
Kang
,
S.
,
Qin
,
H.
,
Fang
,
Y.
,
Li
,
X.
, and
Wang
,
Y.
,
2014
, “
Preparation and Electrochemical Performance of Yttrium-Doped Li[Li0.20Mn0.534Ni0.133Co0.133]O2 as Cathode Material for Lithium-Ion Batteries
,”
Electrochim. Acta
,
144
, pp.
22
30
.
23.
Pan
,
L.
,
Xia
,
Y.
,
Qiu
,
B.
,
Zhao
,
H.
,
Guo
,
H.
,
Jia
,
K.
,
Gu
,
Q.
, and
Liu
,
Z.
,
2016
, “
Structure and Electrochemistry of B Doped Li(Li0.2Ni0.13Co0.13Mn0.54)1-xBxO2 as Cathode Materials for Lithium-Ion Batteries
,”
J. Power Sources
,
327
, pp.
273
280
.
24.
Yamamoto
,
S.
,
Noguchi
,
H.
, and
Zhao
,
W.
,
2015
, “
Improvement of Cycling Performance in Ti Substituted 0.5Li2MnO3-0.5LiNi0.5Mn0.5O2 Through Suppressing Metal Dissolution
,”
J. Power Sources
,
278
, pp.
76
86
.
25.
Li
,
Q.
,
Li
,
G.
,
Fu
,
C.
,
Luo
,
D.
,
Fan
,
J.
, and
Li
,
L.
,
2014
, “
K+-Doped Li1.2Mn0.54Co0.13Ni0.13O2: A Novel Cathode Material With an Enhanced Cycling Stability for Lithium-Ion Batteries
,”
ACS Appl. Mater. Interfaces
,
6
(
13
), pp.
10330
10341
.
26.
Ting
,
T.
, and
Lang
,
Z. H.
,
2016
, “
Synthesis and Electrochemical Performance of Lithium-Rich Cathode Material Li[Li0.2Ni0.15Mn0.55Co0.1-XAlx]O2
,”
Electrochim. Acta
,
191
, pp.
263
269
.
27.
Wang
,
D.
,
Huang
,
Y.
,
Huo
,
Z.
, and
Chen
,
L.
,
2013
, “
Synthesize and Electrochemical Characterization of Mg-Doped Li-Rich Layered Li[Li0.2Ni0.2Mn0.6]O2 Cathode Material
,”
Electrochim. Acta
,
107
, pp.
461
466
.
28.
Zhang
,
Y.
,
Wang
,
Z. B.
,
Lei
,
J.
,
Li
,
F. F.
,
Wu
,
J.
,
Zhang
,
X. G.
,
Yu
,
F. D.
, and
Ke
,
K.
,
2015
, “
Investigation on Performance of Li(Ni0.5Co0.2Mn0.3)1-xTixO2 Cathode Materials for Lithium-Ion Battery
,”
Ceram. Int.
,
41
(
7
), pp.
9069
9077
.
29.
Lu
,
M.
,
Han
,
E.
,
Zhu
,
L.
,
Chen
,
S.
, and
Zhang
,
G.
,
2016
, “
The Effects of Ti4+-Fe3+ Co-Doping on Li[Ni1/3Co1/3Mn1/3]O2
,”
Solid State Ionics
,
298
, pp.
9
14
.
30.
Lu
,
C.
,
Yang
,
S.
,
Wu
,
H.
,
Zhang
,
Y.
,
Yang
,
X.
, and
Liang
,
T.
,
2016
, “
Enhanced Electrochemical Performance of Li-Rich Li1.2Mn0.52Co0.08Ni0.2O2 Cathode Materials for Li-Ion Batteries by Vanadium Doping
,”
Electrochim. Acta
,
209
, pp.
448
455
.
31.
Zheng
,
J.
,
Zhu
,
D.
,
Yang
,
Y.
, and
Fung
,
Y.
,
2012
, “
The Effects of N-Methyl-N-Butyl Pyrrolidinium Bis(Trifluoromethylsulfonyl)Imide-Based Electrolyte on the Electrochemical Performance of High Capacity Cathode Material Li[Li0.2Mn0.54Ni0.13Co0.13]O2
,”
Electrochim. Acta
,
59
, pp.
14
22
.
32.
Ito
,
A.
,
Li
,
D.
,
Ohsawa
,
Y.
, and
Sato
,
Y.
,
2008
, “
A new Approach to Improve the High-Voltage Cyclic Performance of Li-Rich Layered Cathode Material by Electrochemical pre-Treatment
,”
J. Power Sources
,
183
(
1
), pp.
344
346
.
33.
Jiao
,
L. F.
,
Zhang
,
M.
, and
Yuan
,
H. T.
,
2007
, “
Effect of Cr Doping on the Structural, Electrochemical Properties of Li[Li0.2Ni0.2−x/2Mn0.6−x/2Crx]O2 (x = 0, 0.02, 0.04, 0.06, 0.08) as Cathode Materials for Lithium Secondary Batteries
,”
J. Power Sources
,
167
(
1
), pp.
178
184
.
34.
Zhu
,
H.
,
Xie
,
T.
,
Chen
,
Z.
,
Li
,
L.
,
Xu
,
M.
,
Wang
,
W.
,
Lai
,
Y.
, and
Li
,
J.
,
2014
, “
The Impact of Vanadium Substitution on the Structure and Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2
,”
Electrochim. Acta
,
135
, pp.
77
85
.
35.
Wang
,
J.
,
Qiu
,
B.
,
Cao
,
H. L.
,
Xia
,
Y. G.
, and
Liu
,
Z. P.
,
2012
, “
Electrochemical Properties of 0.6Li[Li1/3Mn2/3]O2—0.4LiNixMnyCo1-x-yO2 Cathode Materials for Lithium-Ion Batteries
,”
J. Power Sources
,
218
, pp.
128
133
.
36.
Zhao
,
C.
,
Wang
,
X.
,
Liu
,
X.
,
Zhang
,
H.
, and
Shen
,
Q.
,
2014
, “
Mn-Ni Content-Dependent Structures and Electrochemical Behaviors of Serial Li1.2Ni0.13+xCo0.13Mn0.54-xO2 as Lithium-Ion Battery Cathodes
,”
ACS Appl. Mater. Interfaces
,
6
(
4
), pp.
2386
2392
.
You do not currently have access to this content.