Abstract

Introduction of defects and engineering of structure play significant roles in improvement on electrochemical performances of copper sulfide (Cu9S5) as a supercapacitors (SCs) electrode. Herein, a hierarchical rose-shaped Cu9S5 is synthesized by using a facile one-step hydrothermal method and subsequently annealed under different atmospheres and time. X-ray photoelectron spectroscopy (XPS) spectra and scanning electron microscopy (SEM) confirm the presence of sulfur vacancies and changes of morphology in Cu9S5 annealed under argon (Ar) for 2 h (Cu9S5-Ar-2h), which exhibit an effective promotion to the surface redox reactions and ion transition ability proved by the electrochemical measurements. Thus, when the Cu9S5-Ar-2h is used as an SCs electrode, it performs the highest specific capacity of 337 C/g at a scanning rate of 5 mV/s, which is nearly four times that of the pristine Cu9S5 (92 C/g). Moreover, an asymmetric supercapacitor using Cu9S5-Ar-2h as a positive electrode and activated carbon as a negative electrode is designed and assembled, which demonstrates a good energy density of 13.2 Wh/kg at a power density of 789.5 W/kg and an outstanding cycling stability of near 100% after 2000 cycles. This work will provide a feasible strategy to construct advanced electrodes based on transition metal sulfides by annealing treatments.

References

1.
Chi
,
K.
,
Zhang
,
Z.
,
Lv
,
Q.
,
Xie
,
C.
,
Xiao
,
J.
,
Xiao
,
F.
, and
Wang
,
S.
,
2017
, “
Well-Ordered Oxygen-Deficient CoMoO4 and Fe2O3 Nanoplate Arrays on 3D Graphene Foam: Toward Flexible Asymmetric Supercapacitors With Enhanced Capacitive Properties
,”
ACS Appl. Mater. Interfaces
,
9
(
7
), pp.
6044
6053
.
2.
Ma
,
Y.
,
Hao
,
J.
,
Liu
,
H.
,
Shi
,
W.
, and
Lian
,
J.
,
2020
, “
Facile Synthesis Clusters of Sheet-Like Ni3S4/CuS Nanohybrids With Ultrahigh Supercapacitor Performance
,”
J. Solid State Chem.
,
282
, p.
121088
.
3.
Peng
,
H.
,
Ma
,
G.
,
Sun
,
K.
,
Mu
,
J.
,
Wang
,
H.
, and
Lei
,
Z.
,
2014
, “
High-Performance Supercapacitor Based on Multi-structural CuS@Polypyrrole Composites Prepared by In Situ Oxidative Polymerization
,”
J. Mater. Chem. A
,
2
(
10
), pp.
3303
3307
.
4.
Wang
,
M.
,
Fei
,
H.
,
Zhang
,
P.
, and
Yin
,
L.
,
2016
, “
Hierarchically Layered MoS2/Mn3O4 Hybrid Architectures for Electrochemical Supercapacitors With Enhanced Performance
,”
Electrochim. Acta
,
209
, pp.
389
398
.
5.
Wang
,
Y.
,
Song
,
Y.
, and
Xia
,
Y.
,
2016
, “
Electrochemical Capacitors: Mechanism, Materials, Systems, Characterization and Applications
,”
Chem. Soc. Rev.
,
45
(
21
), pp.
5925
5950
.
6.
Zhao
,
J.
,
Guan
,
B.
,
Hu
,
B.
,
Xu
,
Z.
,
Wang
,
D.
, and
Zhang
,
H.
,
2017
, “
Vulcanizing Time Controlled Synthesis of NiS Microflowers and Its Application in Asymmetric Supercapacitors
,”
Electrochim. Acta
,
230
, pp.
428
437
.
7.
Liu
,
S.
,
Wei
,
L.
, and
Wang
,
H.
,
2020
, “
Review on Reliability of Supercapacitors in Energy Storage Applications
,”
Appl. Energy
,
278
, p.
115436
.
8.
Kouchachvili
,
L.
,
Yaïci
,
W.
, and
Entchev
,
E.
,
2018
, “
Hybrid Battery/Supercapacitor Energy Storage System for the Electric Vehicles
,”
J. Power Sources
,
374
, pp.
237
248
.
9.
Jalal
,
N. I.
,
Ibrahim
,
R. I.
, and
Oudah
,
M. K.
,
2021
, “
A Review on Supercapacitors: Types and Components
,”
Proceedings of the Journal of Physics: Conference Series, IOP Publishing
,
University of Babylon, Iraq
.
10.
Yang
,
J.
,
Liu
,
J.
,
Chen
,
Y.
,
Chang
,
B.
,
Zhang
,
X.
, and
Wang
,
X.
,
2021
, “
Insight Into the Supercapacitive Behavior of Activated Hollow Porous Carbon Spheres in Different Electrolytes
,”
ACS Appl. Energy Mater.
,
4
(
12
), pp.
13766
13775
.
11.
Liu
,
S.
,
Kang
,
L.
,
Zhang
,
J.
,
Jun
,
S. C.
, and
Yamauchi
,
Y.
,
2021
, “
Carbonaceous Anode Materials for Non-aqueous Sodium-and Potassium-Ion Hybrid Capacitors
,”
ACS Energy Lett.
,
6
(
11
), pp.
4127
4154
.
12.
Li
,
W.
,
Zhao
,
X.
,
Bi
,
Q.
,
Ma
,
Q.
,
Han
,
L.
, and
Tao
,
K.
,
2021
, “
Recent Advances in Metal-Organic Framework-Based Electrode Materials for Supercapacitors
,”
Dalton Trans.
,
50
(
34
), pp.
11701
11710
.
13.
Maity
,
C. K.
,
Goswami
,
N.
,
Verma
,
K.
,
Sahoo
,
S.
, and
Nayak
,
G. C.
,
2020
, “
A Facile Synthesis of Boron Nitride Supported Zinc Cobalt Sulfide Nano Hybrid as High-Performance Pseudocapacitive Electrode Material for Asymmetric Supercapacitors
,”
J. Energy Storage
,
32
, p.
101993
.
14.
Liu
,
R.
,
Zhou
,
A.
,
Zhang
,
X.
,
Mu
,
J.
,
Che
,
H.
,
Wang
,
Y.
,
Wang
,
T.
,
Zhang
,
Z.
, and
Kou
,
Z.
,
2021
, “
Fundamentals, Advances and Challenges of Transition Metal Compounds-Based Supercapacitors
,”
Chem. Eng. J.
,
412
, p.
128611
.
15.
Comin
,
A.
, and
Manna
,
L.
,
2014
, “
New Materials for Tunable Plasmonic Colloidal Nanocrystals
,”
Chem. Soc. Rev.
,
43
(
11
), pp.
3957
3975
.
16.
Itzhak
,
A.
,
Teblum
,
E.
,
Girshevitz
,
O.
,
Okashy
,
S.
,
Turkulets
,
Y.
,
Burlaka
,
L.
,
Cohen-Taguri
,
G.
,
Shawat Avraham
,
E.
,
Noked
,
M.
, and
Shalish
,
I.
,
2018
, “
Digenite (Cu9S5): Layered p-Type Semiconductor Grown by Reactive Annealing of Copper
,”
Chem. Mater.
,
30
(
7
), pp.
2379
2388
.
17.
Selyshchev
,
O.
,
Havryliuk
,
Y.
,
Valakh
,
M. Y.
,
Yukhymchuk
,
V. O.
,
Raievska
,
O.
,
Stroyuk
,
O. L.
,
Dzhagan
,
V.
, and
Zahn
,
D. R.
,
2020
, “
Raman and X-ray Photoemission Identification of Colloidal Metal Sulfides as Potential Secondary Phases in Nanocrystalline Cu2ZnSnS4 Photovoltaic Absorbers
,”
ACS Appl. Nano Mater.
,
3
(
6
), pp.
5706
5717
.
18.
Zhou
,
X.
,
Li
,
Z.
,
Deng
,
X.
,
Yan
,
B.
,
Wang
,
Z.
,
Chen
,
X.
, and
Huang
,
S.
,
2019
, “
High Performance Perovskite Solar Cells Using Cu9S5 Supraparticles Incorporated Hole Transport Layers
,”
Nanotechnology
,
30
(
44
), p.
445401
.
19.
Lindroos
,
S.
,
Arnold
,
A.
, and
Leskelä
,
M.
,
2000
, “
Growth of CuS Thin Films by the Successive Ionic Layer Adsorption and Reaction Method
,”
Appl. Surf. Sci.
,
158
(
1–2
), pp.
75
80
.
20.
Peng
,
Z.
,
Li
,
S.
,
Weng
,
M.
,
Zhang
,
M.
,
Xin
,
C.
,
Du
,
Z.
,
Zheng
,
J.
, and
Pan
,
F.
,
2017
, “
First-Principles Study of Cu9S5: A Novel p-Type Conductive Semiconductor
,”
J. Phys. Chem. C
,
121
(
42
), pp.
23317
23323
.
21.
Reijnen
,
L.
,
Meester
,
B.
,
Goossens
,
A.
, and
Schoonman
,
J.
,
2002
, “
Nanoporous TiO2/Cu1.8S Heterojunctions for Solar Energy Conversion
,”
Mater. Sci. Eng. C
,
19
(
1–2
), pp.
311
314
.
22.
Ambade
,
R. B.
,
Ambade
,
S. B.
,
Salunkhe
,
R. R.
,
Malgras
,
V.
,
Jin
,
S.-H.
,
Yamauchi
,
Y.
, and
Lee
,
S.-H.
,
2016
, “
Flexible-Wire Shaped All-Solid-State Supercapacitors Based on Facile Electropolymerization of Polythiophene With Ultra-High Energy Density
,”
J. Mater. Chem. A
,
4
(
19
), pp.
7406
7415
.
23.
Young
,
C.
,
Yi
,
B.-Y.
, and
Chen
,
H.-T.
,
2022
, “
Template-Assisted Fabrication of CuxS–C Hybrid-Structure-Based Electrodes for Electrochemical Applications
,”
Chem. Eng. J.
,
428
, p.
132549
.
24.
Pan
,
Z.
,
Cao
,
F.
,
Hu
,
X.
, and
Ji
,
X.
,
2019
, “
A Facile Method for Synthesizing CuS Decorated Ti3C2 MXene With Enhanced Performance for Asymmetric Supercapacitors
,”
J. Mater. Chem. A
,
7
(
15
), pp.
8984
8992
.
25.
Patil
,
A. M.
,
An
,
X.
,
Li
,
S.
,
Yue
,
X.
,
Du
,
X.
,
Yoshida
,
A.
,
Hao
,
X.
,
Abudula
,
A.
, and
Guan
,
G.
,
2021
, “
Fabrication of Three-Dimensionally Heterostructured rGO/WO3·0.5H2O@Cu2S Electrodes for High-Energy Solid-State Pouch-Type Asymmetric Supercapacitor
,”
Chem. Eng. J.
,
403
, p.
126411
.
26.
Han
,
D.
,
Wu
,
C.
,
Zhang
,
Q.
,
Wei
,
S.
,
Qi
,
X.
,
Zhao
,
Y.
,
Chen
,
Y.
,
Chen
,
Y.
,
Xiao
,
L.
, and
Zhao
,
Z.
,
2018
, “
Solution-Processed Cu9S5 As a Hole Transport Layer for Efficient and Stable Perovskite Solar Cells
,”
ACS Appl. Mater. Interfaces
,
10
(
37
), pp.
31535
31540
.
27.
Chen
,
M.
,
Xiao
,
J.
,
Hua
,
W.
,
Hu
,
Z.
,
Wang
,
W.
,
Gu
,
Q.
,
Tang
,
Y.
,
Chou
,
S. L.
,
Liu
,
H. K.
, and
Dou
,
S. X.
,
2020
, “
A Cation and Anion Dual Doping Strategy for the Elevation of Titanium Redox Potential for High-Power Sodium-Ion Batteries
,”
Angew. Chem., Int. Ed.
,
59
(
29
), pp.
12076
12083
.
28.
Huang
,
Y.
,
Zeng
,
Y.
,
Yu
,
M.
,
Liu
,
P.
,
Tong
,
Y.
,
Cheng
,
F.
, and
Lu
,
X.
,
2018
, “
Recent Smart Methods for Achieving High-Energy Asymmetric Supercapacitors
,”
Small Methods
,
2
(
2
), p.
1700230
.
29.
Wu
,
Q. L.
,
Zhao
,
S. X.
,
Yu
,
L.
,
Zheng
,
X. X.
,
Wang
,
Y. F.
,
Yu
,
L. Q.
,
Nan
,
C. W.
, and
Cao
,
G.
,
2019
, “
Oxygen Vacancy-Enriched MoO3−x Nanobelts for Asymmetric Supercapacitors With Excellent Room/Low Temperature Performance
,”
J. Mater. Chem. A
,
7
(
21
), pp.
13205
13214
.
30.
Xiong
,
T.
,
Yu
,
Z. G.
,
Wu
,
H.
,
Du
,
Y.
,
Xie
,
Q.
,
Chen
,
J.
,
Zhang
,
Y. W.
,
Pennycook
,
S. J.
,
Lee
,
W. S. V.
, and
Xue
,
J.
,
2019
, “
Defect Engineering of Oxygen-Deficient Manganese Oxide to Achieve High-Performing Aqueous Zinc Ion Battery
,”
Adv. Energy Mater.
,
9
(
14
), p.
1803815
.
31.
Donnay
,
G.
,
Donnay
,
J.
, and
Kullerud
,
G.
,
1958
, “
Crystal and Twin Structure of Digenite, Cu9S5
,”
Am. Min. J. Earth Planet. Mater.
,
43
(
3–4
), pp.
228
242
.
32.
Ge
,
Z. H.
,
Zhang
,
B. P.
,
Chen
,
Y. X.
,
Yu
,
Z. X.
,
Liu
,
Y.
, and
Li
,
J. F.
,
2011
, “
Synthesis and Transport Property of Cu1.8S as a Promising Thermoelectric Compound
,”
Chem. Commun.
,
47
(
47
), pp.
12697
12699
.
33.
Yang
,
S.
,
Liu
,
K.
,
Han
,
W.
,
Li
,
L.
,
Wang
,
F.
,
Zhou
,
X.
,
Li
,
H.
, and
Zhai
,
T.
,
2020
, “
Salt-Assisted Growth of P-Type Cu9S5 Nanoflakes for P-N Heterojunction Photodetectors With High Responsivity
,”
Adv. Funct. Mater.
,
30
(
7
), p.
1908382
.
34.
Huang
,
M.
,
Li
,
F.
,
Dong
,
F.
,
Zhang
,
Y. X.
, and
Zhang
,
L. L.
,
2015
, “
MnO2-Based Nanostructures for High-Performance Supercapacitors
,”
J. Mater. Chem. A
,
3
(
43
), pp.
21380
21423
.
35.
Ni
,
J.
, and
Li
,
Y.
,
2016
, “
Carbon Nanomaterials in Different Dimensions for Electrochemical Energy Storage
,”
Adv. Energy Mater.
,
6
(
17
), p.
1600278
.
36.
Wang
,
K.-B.
,
Xun
,
Q.
, and
Zhang
,
Q.
,
2020
, “
Recent Progress in Metal-Organic Frameworks As Active Materials for Supercapacitors
,”
EnergyChem
,
2
(
1
), p.
100025
.
37.
Chang
,
Z.
,
Ju
,
X.
,
Guo
,
P.
,
Zhu
,
X.
,
Liao
,
C.
,
Zong
,
Y.
,
Li
,
X.
, and
Zheng
,
X.
,
2020
, “
Enhanced Performance of Supercapacitor Electrode Materials Based on Hierarchical Hollow Flowerlike HRGOs/Ni-Doped MoS2 Composite
,”
J. Alloys Compd.
,
824
, p.
153873
.
38.
Ju
,
X.
,
Zhu
,
X.
,
Chang
,
Z.
,
Guo
,
L.
,
Liao
,
C.
,
Zong
,
Y.
,
Li
,
X.
, and
Zheng
,
X.
,
2020
, “
Controllable Synthesis of Porous CuO-Cu2O/rGO Microspheres Composite As High-Performance Electrode Material for Supercapacitors
,”
Compos. Interfaces
,
27
(
9
), pp.
845
858
.
39.
Li
,
X.
,
Cao
,
J.
,
Yang
,
L.
,
Wei
,
M.
,
Liu
,
X.
,
Liu
,
Q.
,
Hong
,
Y.
,
Zhou
,
Y.
, and
Yang
,
J.
,
2019
, “
One-Pot Synthesis of ZnS Nanowires/Cu7S4 Nanoparticles/Reduced Graphene Oxide Nanocomposites for Supercapacitor and Photocatalysis Applications
,”
Dalton Trans.
,
48
(
7
), pp.
2442
2454
.
40.
Esfandiar
,
A.
,
Qorbani
,
M.
,
Shown
,
I.
, and
Dogahe
,
B. O.
,
2020
, “
A Stable and High-Energy Hybrid Supercapacitor Using Porous Cu2O–Cu1.8S Nanowire Arrays
,”
J. Mater. Chem. A
,
8
(
4
), pp.
1920
1928
.
41.
Lu
,
W.
,
Shen
,
J.
,
Zhang
,
P.
,
Zhong
,
Y.
,
Hu
,
Y.
, and
Lou
,
X. W.
,
2019
, “
Construction of CoO/Co–Cu–S Hierarchical Tubular Heterostructures for Hybrid Supercapacitors
,”
Angew. Chem.
,
131
(
43
), pp.
15587
15593
.
42.
Klein
,
J. C.
,
Li
,
C. P.
,
Hercules
,
D. M.
, and
Black
,
J. F.
,
1984
, “
Decomposition of Copper Compounds in X-ray Photoelectron Spectrometers
,”
Appl. Spectrosc.
,
38
(
5
), pp.
729
734
.
43.
Nie
,
G.
,
Zhang
,
L.
,
Lu
,
X.
,
Bian
,
X.
,
Sun
,
W.
, and
Wang
,
C.
,
2013
, “
A One-Pot and In Situ Synthesis of CuS-Graphene Nanosheet Composites With Enhanced Peroxidase-Like Catalytic Activity
,”
Dalton Trans.
,
42
(
38
), pp.
14006
14013
.
44.
Cabrera-German
,
D.
,
García-Valenzuela
,
J.
,
Martínez-Gil
,
M.
,
Suárez-Campos
,
G.
,
Montiel-González
,
Z.
,
Sotelo-Lerma
,
M.
, and
Cota-Leal
,
M.
,
2019
, “
Assessing the Chemical State of Chemically Deposited Copper Sulfide: A Quantitative Analysis of the X-ray Photoelectron Spectra of the Amorphous-to-Covellite Transition Phases
,”
Appl. Surf. Sci.
,
481
, pp.
281
295
.
45.
Kang
,
C.
,
Lee
,
Y.
,
Kim
,
I.
,
Hyun
,
S.
,
Lee
,
T. H.
,
Yun
,
S.
,
Yoon
,
W.-S.
,
Moon
,
Y.
,
Lee
,
J.
, and
Kim
,
S.
,
2019
, “
Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode
,”
Materials
,
12
(
8
), p.
1324
.
46.
Kumar
,
D. R.
,
Kesavan
,
S.
,
Baynosa
,
M. L.
, and
Shim
,
J.-J.
,
2018
, “
Flower-Like Cu1.8S Nanostructures for High-Performance Flexible Solid-State Supercapacitors
,”
Appl. Surf. Sci.
,
448
, pp.
547
558
.
47.
Liu
,
Y.
,
Fang
,
Y.
,
Zhao
,
Z.
,
Yuan
,
C.
, and
Lou
,
X. W.
,
2019
, “
A Ternary Fe1−xS@ Porous Carbon Nanowires/Reduced Graphene Oxide Hybrid Film Electrode With Superior Volumetric and Gravimetric Capacities for Flexible Sodium Ion Batteries
,”
Adv. Energy Mater.
,
9
(
9
), p.
1803052
.
48.
Zhang
,
X.
,
Liu
,
S.
,
Tan
,
D.
,
Xian
,
Y.
,
Zhang
,
D.
,
Zhang
,
Z.
,
Liu
,
Y.
,
Liu
,
X.
, and
Qiu
,
J.
,
2020
, “
Photochemically Derived Plasmonic Semiconductor Nanocrystals As an Optical Switch for Ultrafast Photonics
,”
Chem. Mater.
,
32
(
7
), pp.
3180
3187
.
49.
Zhang
,
Q.
,
Zhang
,
W. B.
,
Ma
,
X. J.
,
Zhang
,
L.
,
Bao
,
X.
,
Guo
,
Y. W.
, and
Long
,
J.
,
2021
, “
Boosting Pseudocapacitive Energy Storage Performance Via Both Phosphorus Vacancy Defect and Charge Injection Technique Over the CoP Electrode
,”
J. Alloys Compd.
,
864
, p.
158106
.
50.
Deng
,
J.
, and
Zhao
,
Z.-Y.
,
2019
, “
Effects of Non-stoichiometry on Electronic Structure of CuxSy Compounds Studied by First-Principle Calculations
,”
Mater. Res. Express
,
6
(
10
), p.
105513
.
51.
Zhang
,
M. J.
,
Lin
,
Q.
,
Yang
,
X.
,
Mei
,
Z.
,
Liang
,
J.
,
Lin
,
Y.
, and
Pan
,
F.
,
2016
, “
Novel p-Type Conductive Semiconductor Nanocrystalline Film As the Back Electrode for High-Performance Thin Film Solar Cells
,”
Nano Lett.
,
16
(
2
), pp.
1218
1223
.
52.
Xing
,
H.
,
He
,
W.
,
Liu
,
Y.
,
Long
,
G.
,
Sun
,
Y.
,
Feng
,
J.
,
Feng
,
W.
,
Zhou
,
Y.
,
Zong
,
Y.
, and
Li
,
X.
,
2021
, “
Ultrathin and Highly Crumpled/Porous CoP Nanosheet Arrays Anchored on Graphene Boosts the Capacity and Their Synergistic Effect Toward High-Performance Battery-Type Hybrid Supercapacitors
,”
ACS Appl. Mater. Interfaces
,
13
(
22
), pp.
26373
26383
.
You do not currently have access to this content.