A solid-oxide fuel-cell (SOFC) system based on planar type cells and a cylindrical stack design was examined for small-scale stationary applications. To reduce the operating temperature of electrolyte-supported type cells, scandia-stabilized zirconia (ScSZ) was employed as the electrolyte. A compact catalytic partial oxidation (CPOx) reformer was employed and thin ferritic stainless steel was used for the interconnect bipolar plates. As a result, a carefully designed internal manifold-type 68 cell stack produced an output of 1kW at 1073K with thermal self-sustaining conditions. Also, important issues in realizing high-efficiency, cost-effective SOFC systems are discussed.

1.
de Haart
,
L. G. J.
,
Hauber
,
Th.
,
Mayer
,
K.
,
Stimming
,
U.
, 1996, “
Electrochemical Performance of an Anode Supported Planar SOFC System
,”
Proc. 2nd European Solid Oxide Fuel Cells Forum
,
Bernt
Thorstensen
, ed.,
European Fuel Cell Forum
,
Oberrohrdoff
, Switzerland,
1
, pp.
229
235
.
2.
Buchkremer
,
H. P.
,
Diekmann
,
U.
,
de Haart
,
L. G. J.
,
Kabs
,
H.
,
Stimming
,
U.
, and
Stover
,
D.
, 1997, “
Operation of Anode-Supported Thin Electrolyte Film Solid Oxide Fuel Cells at 800°C and Below
,”
Solid Oxide Fuel Cells V
,
U.
Stimming
,
S. C.
Singhal
,
H.
Tagawa
, and
W.
Lehnert
, eds.,
Electrochemical Society
,
Pennington
, NJ, PV97-40, pp.
160
170
.
3.
de Haart
,
L. G. J.
,
Mayer
,
K.
,
Stimming
,
U.
, and
Vinke
,
I. C.
, 1998, “
Operation of Anode-Supported Thin Electrolyte Film Solid Oxide Fuel Cells at 800°C and Below
,”
J. Power Sources
0378-7753,
71
(
1–2
), pp.
302
305
.
4.
Mizutani
,
Y.
,
Kawai
,
M.
,
Nomura
,
K.
, and
Nakamura
,
Y.
, 1999, “
Characteristics of Substrate Type SOFC Using Sc-Doped Zirconia Electrolytes
,”
Solid Oxide Fuel Cells VI
,
S. C.
Singhal
and
M.
Dokiya
, eds.,
Electrochemical Society
,
Pennington
, NJ, PV99-19, pp.
185
192
.
5.
Yamada
,
T
,
Chitose
,
N.
,
Akikusa
,
J.
,
Murakami
,
N.
,
Akbay
,
T.
,
Miyazawa
,
T.
,
Adachi
,
K.
,
Hasegawa
,
A.
,
Yamada
,
M.
,
Hoshino
,
K.
,
Hoshi
,
K.
, and
Komada
,
K.
, 2003, “
Development of Intermediate-Temperature SOFC Module Using Doped Lanthanum Gallate
,”
Solid Oxide Fuel Cells VIII
,
S. C.
Singhal
and
M.
Dokiya
, eds.,
Electrochemical Society
,
Pennington
, NJ, PV2003-07, pp.
113
118
.
6.
Baba
,
Y.
,
Ogasawara
,
K.
,
Yakabe
,
H.
,
Matsuzaki
,
Y.
, and
Sakurai
,
T.
, 2003, “
Development of Anode-Supported SOFC With Metallic Interconnectors
,”
Solid Oxide Fuel Cells VIII
,
S. C.
Singhal
and
M.
Dokiya
, eds.,
Electrochemical Society
,
Pennington
, NJ, PV2003-07, pp.
119
126
.
7.
Mizutani
,
Y.
,
Tamura
,
M.
,
Kawai
,
M.
, and
Yamamoto
,
O.
, 1994, “
Development of High-Performance Electrolyte in SOFC
,”
Solid State Ionics
0167-2738,
72
, pp.
271
275
.
8.
Ishii
,
T.
, and
Tajima
,
Y.
, 1994, “
Low Temperature Operation of Solid Oxide Fuel Cell with a ZrO2Sc2O3Al2O3 System Electrolyte
,”
J. Electrochem. Soc.
0013-4651,
141
, pp.
3450
3453
.
9.
Yamamoto
,
O.
,
Arati
,
Y.
,
Takeda
,
Y.
,
Imanishi
,
N.
,
Mizutani
,
Y.
, and
Kawai
,
M.
, 1995, “
Electrical Conductivity of Stabilized Zirconia With Ytterbia and Scandia
,”
Solid State Ionics
0167-2738,
79
, pp.
137
142
.
10.
Mizutani
,
Y.
,
Tamura
,
M.
,
Kawai
,
M.
,
Nomura
,
K.
,
Nakamura
,
Y.
, and
Yamamoto
,
O.
, 1995, “
Characterization of the Sc2O3ZrO2 System and Its Application as the Electrolyte in Planar SOFC
,”
Solid Oxide Fuel Cells IV
,
M.
Dokiya
,
O.
Yamamoto
,
H.
Tagawa
, and
S. C.
Singhal
, eds.,
Electrochemical Society
,
Pennington
, NJ, PV95-1, pp.
301
309
.
11.
Tietz
,
F.
,
Fischer
,
W.
,
Hauber
,
Th.
, and
Mariotto
,
G.
, 1997, “
Structural Evolution of Sc-Containing Zirconia Electrolytes
,”
Solid State Ionics
0167-2738,
100
, pp.
289
295
.
12.
Mizutani
,
Y.
,
Kawai
,
M.
,
Nomura
,
K.
,
Nakamura
,
Y.
, and
Yamamoto
,
O.
, 1997, “
Performance of Sc2O3ZrO2 Electrolytes on Planar Solid Oxide Fuel Cell
,”
Solid Oxide Fuel Cells V
,
U.
Stimming
,
S. C.
Singhal
,
H.
Tagawa
, and
W.
Lehnert
, eds.,
Electrochemical Society
,
Pennington
, NJ, PV97-40, pp.
196
203
.
13.
Hirano
,
M.
,
Watanabe
,
S.
,
Kato
,
E.
,
Mizutani
,
Y.
,
Kawai
,
M.
, and
Nakamura
,
Y.
, 1999, “
High Electrical Conductivity and High Fracture Strength of Sc2O3-Doped Zirconia Ceramics With Submicrometer Grains
,”
J. Am. Ceram. Soc.
0002-7820,
82
, pp.
2861
2864
.
14.
Hirano
,
M.
,
Watanabe
,
S.
,
Kato
,
E.
,
Mizutani
,
Y.
,
Kawai
,
M.
, and
Nakamura
,
Y.
, 1998, “
Fabrication, Electrical Conductivity and Mechanical Properties of Sc2O3-Doped Tetragonal Zirconia Ceramics
,”
Solid State Ionics
0167-2738,
111
, pp.
161
169
.
15.
Hirano
,
M.
,
Inagaki
,
M.
,
Mizutani
,
Y.
,
Nomura
,
K.
,
Kawai
,
M.
, and
Nakamura
,
Y.
, 2000, “
Mechanical and Electrical Properties of Sc2O3-Doped Zirconia Ceramics Improved by Postsintering With HIP
,”
Solid State Ionics
0167-2738,
133
, pp.
1
9
.
16.
Diethelm
,
R.
,
Brun
,
J.
,
Gamper
,
Th.
,
Keller
,
M.
,
Kruschwits
,
R.
, and
Lenel
,
D.
, 1997, “
Status of the Sulzer Hexis Solid Oxide Fuel Cell (SOFC) System Development
,”
Solid Oxide Fuel Cells V
,
U.
Stimming
,
S. C.
Singhal
,
H.
Tagawa
, and
W.
Lehnert
, eds.,
Electrochemical Society
,
Pennington
, NJ, PV97-40, pp.
79
87
.
17.
Janousek
,
M.
,
Lock
,
W.
,
Baumgartner
,
M.
, and
Greiner
,
H.
, 1997, “
Development and Processing of Chromium Based Alloys for Structural Parts in Solid Oxide Fuel Cells
,”
Solid Oxide Fuel Cells V
,
U.
Stimming
,
S. C.
Singhal
,
H.
Tagawa
, and
W.
Lehnert
, eds.,
Electrochemical Society
,
Pennington
, NJ, PV97-40, pp.
1225
1233
.
18.
Nomura
,
K.
,
Mizutani
,
Y.
,
Kawai
,
M.
,
Nakamura
,
Y.
,
Yamamoto
,
O.
, 2000, “
Aging and Raman Scattering Study of Scandia and Yttria Doped Zirconia
,”
Solid State Ionics
0167-2738,
132
, pp.
235
239
.
19.
Matsuzaki
,
Y.
, and
Yasuda
,
I.
, 2000, “
Electrochemical Properties of a SOFC Cathode in Contact With a Chromium-Containing Alloy Separator
,”
Solid State Ionics
0167-2738,
132
, pp.
271
278
.
You do not currently have access to this content.