Abstract

Aiming at the phenomenon of battery capacity regeneration, which leads to inaccurate prediction of lithium-ion battery state of health (SOH), a new fusion method based on ensemble empirical mode decomposition (EEMD), Pearson correlation analysis (PCA), and improved long short-term memory (LSTM) network and Gaussian function-trust region (GS-TR) algorithm is introduced to predict battery SOH. First, the EEMD method is adopted to process the battery SOH data to eliminate the impact of capacity recovery. Second, the decomposed data signals are classified by the PCA method, and the signals classified as high frequency and low frequency are respectively predicted by the improved LSTM algorithm and the GS-TR algorithm. Finally, the prediction results of the improved LSTM and GS-TR algorithms are integrated. The proposed fusion method avoids the complexity of the hybrid neural network model and improves the prediction efficiency. Based on the average results of the three data sets from NASA, the RMSE result of the proposed algorithm is reduced by 9.56% compared with the improved LSTM with the EEMD algorithm and 37.57% compared with the improved LSTM without the EEMD algorithm. The results show that the proposed method has higher adaptability and prediction accuracy.

References

1.
Cai
,
L.
,
Meng
,
J.
,
Stroe
,
D. I.
,
Luo
,
G.
, and
Teodorescu
,
R.
,
2019
, “
An Evolutionary Framework for Lithium-Ion Battery State of Health Estimation
,”
J. Power Sources
,
412
, pp.
615
622
.
2.
Shang
,
Y.
,
Cui
,
N.
,
Duan
,
B.
, and
Zhang
,
C.
,
2018
, “
Analysis and Optimization of Star-Structured Switched-Capacitor Equalizers for Series-Connected Battery Strings
,”
IEEE Trans. Power Electron.
,
33
(
11
), pp.
9631
9646
.
3.
Zhang
,
Y.
,
Xiong
,
R.
,
He
,
H.
, and
Pecht
,
M.
,
2019
, “
Validation and Verification of a Hybrid Method for Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
J. Cleaner Prod.
,
212
, pp.
240
249
.
4.
Couto
,
L. D.
,
Schorsch
,
J.
,
Job
,
N.
,
Leonard
,
A.
, and
Kinnaert
,
M.
,
2019
, “
State of Health Estimation for Lithium Ion Batteries Based on an Equivalent-Hydraulic Model: An Iron Phosphate Application
,”
J. Energy Storage
,
21
, pp.
259
271
.
5.
Xu
,
X.
,
Yu
,
C.
,
Tang
,
S.
,
Sun
,
X.
, and
Wu
,
L.
,
2019
, “
State-of-Health Estimation for Lithium-Ion Batteries Based on Wiener Process With Modeling the Relaxation Effect
,”
IEEE Access
,
7
, pp.
105186
105201
.
6.
Shu
,
X.
,
Li
,
G.
,
Shen
,
J.
,
Yan
,
W.
,
Chen
,
Z.
, and
Liu
,
Y.
,
2020
, “
An Adaptive Fusion Estimation Algorithm for State of Charge of Lithium-Ion Batteries Considering Wide Operating Temperature and Degradation
,”
J. Power Sources
,
462
, pp.
228132
.
7.
Chen
,
Z.
,
Xue
,
Q.
,
Xiao
,
R.
,
Liu
,
Y.
, and
Shen
,
J.
,
2019
, “
State of Health Estimation for Lithium-Ion Batteries Based on Fusion of Autoregressive Moving Average Model and Elman Neural Network
,”
IEEE Access
,
7
, pp.
102662
102678
.
8.
Di
,
Z.
,
Yin
,
H.
,
Wei
,
X.
,
Ping
,
F.
, and
Lu
,
W.
,
2019
, “
Research on Online Capacity Estimation of Power Battery Based on EKF-GPR Model
,”
J. Chem.
,
2019
, pp.
1
9
.
9.
Giordano
,
G.
,
Klass
,
V.
,
Behm
,
M.
,
Lindbergh
,
G.
, and
Sjoberg
,
J.
,
2018
, “
Model-Based Lithium-Ion Battery Resistance Estimation From Electric Vehicle Operating Data
,”
IEEE Trans. Veh. Technol.
,
67
(
5
), pp.
3720
3728
.
10.
Guo
,
Y.
,
Huang
,
K.
, and
Hu
,
X.
,
2021
, “
A State-of-Health Estimation Method of Lithium-Ion Batteries Based on Multi-Feature Extracted From Constant Current Charging Curve
,”
J. Energy Storage
,
36
, p.
102372
.
11.
Ma
,
Y.
,
Chen
,
Y.
,
Zhou
,
X.
, and
Chen
,
H.
,
2018
, “
Remaining Useful Life Prediction of Lithium-Ion Battery Based on Gauss-Hermite Particle Filter
,”
IEEE Trans. Control Syst. Technol.
,
27
(
4
), pp.
1
8
.
12.
Kim
,
J.
,
Krüger
,
L.
, and
Kowal
,
J.
,
2020
, “
On-Line State-of-Health Estimation of Lithium-Ion Battery Cells Using Frequency Excitation
,”
J. Energy Storage
,
32
, p.
101841
.
13.
Bi
,
Y.
,
Yin
,
Y.
, and
Choe
,
S.-Y.
,
2020
, “
Online State of Health and Aging Parameter Estimation Using a Physics-Based Life Model With a Particle Filter
,”
J. Power Sources
,
476
, p.
228655
.
14.
Yang
,
D.
,
Zhang
,
X.
,
Pan
,
R.
,
Wang
,
Y.
, and
Chen
,
Z.
,
2018
, “
A Novel Gaussian Process Regression Model for State-of-Health Estimation of Lithium-Ion Battery Using Charging Curve
,”
J. Power Sources
,
384
, pp.
387
395
.
15.
Li
,
J.
,
Adewuyi
,
K.
,
Lotfi
,
N.
,
Landers
,
R. G.
, and
Park
,
J.
,
2018
, “
A Single Particle Model With Chemical/Mechanical Degradation Physics for Lithium Ion Battery State of Health (SOH) Estimation
,”
Appl. Energy
,
212
, pp.
1178
1190
.
16.
Zhang
,
H.
,
Miao
,
Q.
,
Zhang
,
X.
, and
Liu
,
Z.
,
2018
, “
An Improved Unscented Particle Filter Approach for Lithium-Ion Battery Remaining Useful Life Prediction
,”
Microelectron. Reliab.
,
81
, pp.
288
298
.
17.
Pan
,
W.
,
Chen
,
Q.
,
Zhu
,
M.
,
Tang
,
J.
, and
Wang
,
J.
,
2020
, “
A Data-Driven Fuzzy Information Granulation Approach for Battery State of Health Forecasting
,”
J. Power Sources
,
475
, p.
228716
.
18.
Cai
,
L.
,
Meng
,
J.
,
Stroe
,
D.-I.
,
Peng
,
J.
,
Luo
,
G.
, and
Teodorescu
,
R.
,
2020
, “
Multiobjective Optimization of Data-Driven Model for Lithium-Ion Battery SOH Estimation With Short-Term Feature
,”
IEEE Trans. Power Electron.
,
35
(
11
), pp.
11855
11864
.
19.
Liu
,
W.
,
Xu
,
Y.
, and
Feng
,
X.
,
2020
, “
A Hierarchical and Flexible Data-Driven Method for Online State-of-Health Estimation of Li-Ion Battery
,”
IEEE Trans. Veh. Technol.
,
69
(
12
), pp.
14739
14748
.
20.
Li
,
Y.
,
Zou
,
C.
,
Berecibar
,
M.
,
Nanini-Maury
,
E.
,
Chan
,
J.
,
van den Bossche
,
P.
,
Mierlo
,
J.
, and
Omar
,
N.
,
2018
, “
Random Forest Regression for Online Capacity Estimation of Lithium-Ion Batteries
,”
Appl. Energy
,
232
, pp.
197
210
.
21.
Zhang
,
Y.
,
Xiong
,
R.
,
He
,
H.
, and
Pecht
,
M. G.
,
2018
, “
Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
IEEE Trans. Veh. Technol.
,
67
(
7
), pp.
5695
5705
.
22.
Li
,
X.
,
Zhang
,
L.
,
Wang
,
Z.
, and
Dong
,
P.
,
2019
, “
Remaining Useful Life Prediction for Lithium-Ion Batteries Based on a Hybrid Model Combining the Long Short-Term Memory and Elman Neural Networks
,”
J. Energy Storage
,
21
, pp.
510
518
.
23.
Wang
,
P.
,
Dan
,
X.
, and
Yang
,
Y.
,
2019
, “
A Multi-Scale Fusion Prediction Method for Lithium-Ion Battery Capacity Based on Ensemble Empirical Mode Decomposition and Nonlinear Autoregressive Neural Networks
,”
Int. J. Distrib. Sens. Netw.
,
15
(
3
), p.
155014771983963
.
24.
Pang
,
X.
,
Huang
,
R.
,
Wen
,
J.
,
Shi
,
Y.
,
Jia
,
J.
, and
Zeng
,
J.
,
2019
, “
A Lithium-Ion Battery RUL Prediction Method Considering the Capacity Regeneration Phenomenon
,”
Energies
,
12
(
12
), p.
2247
.
25.
Guo
,
P.
,
Cheng
,
Z.
, and
Yang
,
L.
,
2019
, “
A Data-Driven Remaining Capacity Estimation Approach for Lithium-Ion Batteries Based on Charging Health Feature Extraction
,”
J. Power Sources
,
412
, pp.
442
450
.
26.
Severson
,
K. A.
,
Attia
,
P. M.
,
Jin
,
N.
,
Perkins
,
N.
,
Jiang
,
B.
, and
Yang
,
Z.
,
2019
, “
Data-Driven Prediction of Battery Cycle Life Before Capacity Degradation
,”
Nature Energy
,
4
(
5
), pp.
383
391
.
27.
Saha
,
B.
, and
Goebel
,
K.
,
2007
, Battery Data Set. NASA Ames Prognostics Data Repository, Moffett Field, CA, https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/, Accessed September 1, 2018.
28.
Zhou
,
Y.
,
Huang
,
M.
, and
Pecht
,
M.
,
2020
, “
Remaining Useful Life Estimation of Lithium-Ion Cells Based on k-Nearest Neighbor Regression With Differential Evolution Optimization
,”
J. Cleaner Prod.
,
249
, p.
119409
.
29.
Wu
,
Z.
, and
Huang
,
N.
,
2009
, “
Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method
,”
Adv. Adapt. Data Anal.
,
1
(
1
), pp.
1
41
.
30.
Prechelt
,
L.
,
2012
,
Early Stopping—But When?. Neural Networks: Tricks of the Trade
,
Springer
,
Berlin, Germany
, pp.
53
67
.
You do not currently have access to this content.