Abstract
Porous structures in anode materials are of importance to accommodate volume dilation of active matters. In the present case, a carbon nanoporous framework is hydrothermally synthesized from glucose in the presence of graphene oxide, together with in situ active Fe3O4 nanoparticles within it. The composite anode material has outstanding electrochemical performance, including high specific capacity, excellent cyclic stability, and superior rate capability. The specific capacity stays at 830.8 mA h g−1 after 200 cycles at 1 A/g, equivalent to a high-capacity retention of 88.7%. The findings provide valuable clues to tailor morphology of hydrothermally carbonized glucose for advanced composite anode materials of lithium-ion batteries.
Issue Section:
Research Papers
Keywords:
graphene oxide,
anode material,
carbon framework,
hydrothermal synthesis,
batteries,
novel materials
Topics:
Anodes,
Carbon,
Composite materials,
Glucose,
Graphene,
Lithium-ion batteries,
Cycles,
Nanoparticles
References
1.
Park
, S. H.
, Kim
, H. J.
, Lee
, J.
, Jeong
, Y. K.
, Choi
, J. W.
, and Lee
, H.
, 2016
, “Mussel-Inspired Polydopamine Coating for Enhanced Thermal Stability and Rate Performance of Graphite Anodes in Li-Ion Batteries
,” ACS Appl. Mater. Interfaces
, 8
(22
), pp. 13973
–13981
. 2.
Müller
, M.
, Pfaffmann
, L.
, Jaiser
, S.
, Baunach
, M.
, Trouillet
, V.
, Scheiba
, F.
, Scharfer
, P.
, Schabel
, W.
, and Bauer
, W.
, 2017
, “Investigation of Binder Distribution in Graphite Anodes for Lithium-Ion Batteries
,” J. Power Sources
, 340
(4
), pp. 1
–5
. 3.
Zuo
, X.
, Zhu
, J.
, Müller-Buschbaum
, P.
, and Cheng
, Y. J.
, 2017
, “Silicon Based Lithium-Ion Battery Anodes: A Chronicle Perspective Review
,” Nano Energy
, 31
(1
), pp. 113
–143
. 4.
Deng
, Y.
, Ma
, L.
, Li
, T.
, Li
, J.
, and Yuan
, C.
, 2019
, “Life Cycle Assessment of Silicon-Nanotube-Based Lithium Ion Battery for Electric Vehicles
,” ACS Sustain. Chem. Eng.
, 7
(1
), pp. 599
–610
. 5.
Song
, J.
, Zhou
, M.
, Yi
, R.
, Xu
, T.
, Gordin
, M. L.
, and Tang
, D.
, 2014
, “Interpenetrated Gel Polymer Binder for High-Performance Silicon Anodes in Lithium-Ion Batteries
,” Adv. Funct. Mater.
, 24
(37
), pp. 5904
–5910
. 6.
Huang
, Y. C.
, Brahma
, S.
, Chang
, C. C.
, and Huang
, J. L.
, 2022
, “Mo-Doped SnO2 Quantum Dots Dispersed Over Reduced Graphene Oxide Sheets as an Efficient Anode Material
,” J. Electrochem. Energy Convers. Storage
, 19
(1
), p. 011006
. 7.
Xiao
, Y.
, Jiang
, M.
, and Cao
, M.
, 2021
, “Developing WO3 as High-Performance Anode Material for Lithium-Ion Batteries
,” Mater. Lett.
, 285
(4
), p. 129129
. 8.
Mhamane
, D.
, Aravindan
, V.
, Taneja
, D.
, Suryawanshi
, A.
, Game
, O.
, Srinivasan
, M.
, and Ogale
, S.
, 2016
, “Graphene Based Nanocomposites for Alloy (SnO2), and Conversion (Fe3O4) Type Efficient Anodes for Li-Ion Battery Applications
,” Compos. Sci. Technol.
, 130
(9
), pp. 88
–95
. 9.
Wu
, D.
, Niu
, Y.
, Wang
, C.
, Wu
, H.
, Li
, Q.
, Chen
, Z.
, Xu
, B.
, Li
, H.
, and Zhang
, L. Y.
, 2019
, “γ-Fe2O3 Nanoparticles Stabilized by Holey Reduced Graphene Oxide as a Composite Anode for Lithium-Ion Batteries
,” J. Colloid Interface Sci.
, 552
(20
), pp. 633
–638
. 10.
Zhang
, Y.
, Zhang
, K.
, Ren
, S.
, Jia
, K.
, Dang
, Y.
, Liu
, G.
, Li
, K.
, Long
, X.
, and Qiu
, J.
, 2019
, “3D Nanoflower-Like Composite Anode of α-Fe2O3/Coal-Based Graphene for Lithium-Ion Batteries
,” J. Alloys Compd.
, 792
(23
), pp. 828
–834
. 11.
Jin
, Y.
, Zhu
, B.
, Lu
, Z.
, Liu
, N.
, and Zhu
, J.
, 2017
, “Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery
,” Adv. Energy Mater.
, 7
(23
), p. 1700715
. 12.
Luo
, L.
, Xu
, Y.
, Zhang
, H.
, Han
, X.
, Dong
, H.
, Xu
, X.
, Chen
, C.
, Zhang
, Y.
, and Lin
, J.
, 2016
, “Comprehensive Understanding of High Polar Polyacrylonitrile as an Effective Binder for Li-Ion Battery Nano-Si Anodes
,” ACS Appl. Mater. Interfaces
, 8
(12
), pp. 8154
–8161
. 13.
Xia
, F.
, Kim
, S. B.
, Cheng
, H.
, Lee
, J. M.
, Song
, T.
, Huang
, Y.
, Rogers
, J. A.
, Paik
, U.
, and Park
, W. I.
, 2013
, “Facile Synthesis of Free-Standing Silicon Membranes With Three-Dimensional Nanoarchitecture for Anodes of Lithium Ion Batteries
,” Nano Lett.
, 13
(7
), pp. 3340
–3346
. 14.
Lee
, D. J.
, Lee
, H.
, Ryou
, M. H.
, Han
, G. B.
, Lee
, J. N.
, Song
, J.
, Choi
, J.
, Cho
, K. Y.
, Lee
, Y. M.
, and Park
, J. K.
, 2013
, “Electrospun Three-Dimensional Mesoporous Silicon Nanofibers as an Anode Material for High-Performance Lithium Secondary Batteries
,” ACS Appl. Mater. Interfaces
, 5
(22
), pp. 12005
–12010
. 15.
Gao
, X.
, Wang
, F.
, Gollon
, S.
, and Yuan
, C.
, 2019
, “Micro Silicon-Graphene-Carbon Nanotube Anode for Full Cell Lithium-Ion Battery
,” J. Electrochem. Energy Convers. Storage
, 16
(1
), p. 011009
. 16.
Liu
, B.
, Soares
, P.
, Checkles
, C.
, Zhao
, Y.
, and Yu
, G.
, 2013
, “Three-Dimensional Hierarchical Ternary Nanostructures for High-Performance Li-Ion Battery Anodes
,” Nano Lett.
, 13
(7
), pp. 3414
–3419
. 17.
Xu
, Y.
, Yin
, G.
, Ma
, Y.
, Zuo
, P.
, and Cheng
, X.
, 2010
, “Nanosized Core/Shell Silicon@Carbon Anode Material for Lithium Ion Batteries With Polyvinylidene Fluoride as Carbon Source
,” J. Mater. Chem.
, 20
(16
), pp. 3216
–3220
. 18.
Hu
, B.
, Kuang
, X.
, Xu
, S.
, and Wang
, X.
, 2019
, “A Novel Anode With Superior Cycling Stability Based on Silicon Encapsulated in Shell-Like rGO/CNT Architecture for Lithium-Ion Batteries
,” Energy Technol.
, 7
(5
), p. 1801047
. 19.
Weng
, Y.
, Chen
, G.
, Dou
, F.
, Zhuang
, X.
, Wang
, Q.
, Lu
, M.
, Shi
, L.
, and Zhang
, D.
, 2020
, “In Situ Growth of Silicon Carbide Interface Enhances the Long Life and High Power of the Mulberry-Like Si-Based Anode for Lithium-Ion Batteries
,” J. Energy Storage
, 32
(6
), p. 101856
. 20.
Zhang
, H.
, Zong
, P.
, Chen
, M.
, Jin
, H.
, Bai
, Y.
, Li
, S.
, Ma
, F.
, Xu
, H.
, and Lian
, K.
, 2019
, “In-Situ Synthesis of Multilayer Carbon Matrix Decorated With Copper Particles: Enhancing the Performance of Si as Anode for Li-Ion Batteries
,” ACS Nano
, 13
(3
), pp. 3054
–3062
. 21.
Qu
, X.
, Zhang
, X.
, Wu
, Y.
, Hu
, J.
, Gao
, M.
, Pan
, H.
, and Liu
, Y.
, 2019
, “An Eggshell-Structured N-Doped Silicon Composite Anode With High Anti-Pulverization and Favorable Electronic Conductivity
,” J. Power Sources
, 443
(35
), p. 227265
. 22.
Luo
, J.
, Zhao
, X.
, Wu
, J.
, Jang
, H. D.
, Kung
, H. H.
, and Huang
, J.
, 2012
, “Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes
,” J. Phys. Chem. Lett.
, 3
(13
), pp. 1824
–1829
. 23.
Falco
, C.
, Caballero
, F. P.
, Babonneau
, F.
, Gervais
, C.
, Laurent
, G.
, Titirici
, M. M.
, and Baccile
, N.
, 2011
, “Hydrothermal Carbon From Biomass: Structural Differences Between Hydrothermal and Pyrolyzed Carbons Via 13C Solid State NMR
,” Langmuir
, 27
(23
), pp. 14460
–14471
. 24.
Qi
, X.
, Li
, L.
, Tan
, T.
, Chen
, W.
, and Smith, Jr.
, R. L.
, 2013
, “Adsorption of 1-Butyl-3-Methylimidazolium Chloride Ionic Liquid by Functional Carbon Microspheres From Hydrothermal Carbonization of Cellulose
,” Environ. Sci. Technol.
, 47
(6
), pp. 2792
–2798
. 25.
Zhang
, Z.
, Liu
, Y.
, Cao
, X.
, and Liang
, P.
, 2013
, “Sorption Study of Uranium on Carbon Spheres Hydrothermal Synthesized With Glucose From Aqueous Solution
,” J. Radioanal. Nucl. Chem.
, 295
(3
), pp. 1775
–1782
. 26.
Gallifuoco
, A.
, 2019
, “A New Approach to Kinetic Modeling of Biomass Hydrothermal Carbonization
,” ACS Sustain. Chem. Eng.
, 7
(15
), pp. 13073
–13080
. 27.
Krishnan
, D.
, Raidongia
, K.
, Shao
, J.
, and Huang
, J.
, 2014
, “Graphene Oxide Assisted Hydrothermal Carbonization of Carbon Hydrates
,” ACS Nano
, 8
(1
), pp. 449
–457
. 28.
Li
, M.
, Pan
, F.
, Choo
, E. S. G.
, Lv
, Y.
, Chen
, Y.
, and Xue
, J.
, 2016
, “Designed Construction of a Graphene and Iron Oxide Freestanding Electrode With Enhanced Flexible Energy-Storage Performance
,” ACS Appl. Mater. Interfaces
, 8
(11
), pp. 6972
–6981
. 29.
Wang
, J.
, Yang
, X.
, Wang
, Y.
, Jin
, S.
, Cai
, W.
, Liu
, B.
, Ma
, C.
, Liu
, X.
, Qiao
, W.
, and Ling
, L.
, 2021
, “Rational Design and Synthesis of Sandwich-Like Reduced Graphene Oxide/Fe2O3/N-Doped Carbon Nanosheets as High-Performance Anode Materials for Lithium-Ion Batteries
,” Chem. Eng. Sci.
, 231
(3
), p. 116271
. 30.
Nie
, M.
, Abraham
, D. P.
, Chen
, Y.
, Bose
, A.
, and Lucht
, B. L.
, 2013
, “Silicon Solid Electrolyte Interphase (SEI) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy
,” J. Phys. Chem. C
, 117
(26
), pp. 13403
–13412
. 31.
Wang
, X.
, Zhang
, M.
, Alvarado
, J.
, Wang
, S.
, Sina
, M.
, Lu
, B.
, Bouwer
, J.
, et al, 2017
, “New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases Via Cryogenic TEM
,” Nano Lett.
, 17
(12
), pp. 7606
–7612
. 32.
Guo
, K.
, Kumar
, R.
, Xiao
, X.
, Sheldon
, B. W.
, and Gao
, H.
, 2020
, “Failure Progression in the Solid Electrolyte Interphase (SEI) on Silicon Electrodes
,” Nano Energy
, 68
(2
), p. 104257
. 33.
Zhao
, D.
, Wang
, J.
, Wang
, P.
, Liu
, H.
, and Li
, S.
, 2020
, “Regulating the Composition Distribution of Layered SEI Film on Li-Ion Battery Anode by LiDFBOP
,” Electrochim. Acta
, 337
(9
), p. 135745
. 34.
Zhou
, J.
, Xu
, S.
, Kang
, Q.
, Ni
, L.
, Chen
, N.
, Li
, X.
, Lu
, C.
, et al, 2020
, “Iron Oxide Encapsulated in Nitrogen-Rich Carbon Enabling High-Performance Lithium-Ion Capacitor
,” Sci. China Mater.
, 63
(11
), pp. 2289
–2302
. 35.
Yao
, S.
, Zhang
, G.
, Zhang
, X.
, and Shi
, Z.
, 2020
, “Mace-Like Carbon Fibers@Fe3O4@Carbon Composites as Anode Materials for Lithium-Ion Batteries
,” Ionics
, 26
(12
), pp. 5923
–5934
. Copyright © 2021 by ASME
You do not currently have access to this content.