Abstract

Accurate estimation of state of charge (SOC) is the basis of battery management system. The fractional-order theory is introduced into the resistance-capacitance (RC)model of lithium battery, and adaptive genetic algorithm is used to identify the parameters of the RC model. Considering the changes of internal resistance and battery aging during battery discharge, the state of health (SOH) of the battery is estimated by unscented Kalman filter (UKF), and the values of internal resistance and maximum capacity of the battery are obtained. Finally, a novel estimation algorithm of lithium battery SOC based on SOH and fractional-order adaptive extended Kalman filter (FOAEKF) is proposed. An experimental system is set up to verify the effectiveness of the proposed algorithm. The experimental results show that, compared with the traditional SOC estimation algorithms, the proposed method has higher estimation accuracy, with the average error lower than 1% and the maximum error lower than 2%.

References

1.
Verbrugge
,
M.
,
Frisch
,
D.
, and
Koch
,
B.
,
2005
, “
Adaptive Energy Management of Electric and Hybrid Electric Vehicles
,”
J. Electrochem. Soc.
,
152
(
2
), pp.
A333
A342
.
2.
Zhang
,
J.
, and
Lee
,
J.
,
2011
, “
A Review on Prognostics and Health Monitoring of Li-Ion Battery
,”
J. Power Sources
,
196
(
15
), pp.
6007
6014
.
3.
Lu
,
C.
,
Tao
,
L.
, and
Fan
,
H.
,
2014
, “
Li-Ion Battery Capacity Estimation: A Geometrical Approach
,”
J. Power Sources
,
261
, pp.
141
147
.
4.
Lee
,
J.
,
Nam
,
O.
, and
Cho
,
B. H.
,
2007
, “
Li-Ion Battery SOC Estimation Method Based on the Reduced Order Extended Kalman Filtering
,”
J. Power Sources
,
174
(
1
), pp.
9
15
.
5.
Tanim
,
T.
,
2015
, “
State of Charge Estimation of a Lithium Ion Cell Based on a Temperature Dependent and Electrolyte Enhanced Single Particle Model
,”
Energy
,
80
, pp.
731
739
.
6.
Deng
,
T.
, and
Sun
,
H.
,
2015
, “
A New Real-Time SOC Integral Estimation Method for Lithium Ion Batteries
,”
J. Nat. Sci. Chongqing. Univ.
,
29
(
01
), pp.
101
106
.
7.
Ouyang
,
J. J.
,
Mao
,
L. P.
, and
Zhang
,
J.
,
2016
, “
Kalman Filter SOC Estimation Based on SOC-OCV Curve
,”
Power Electron Technol
,
50
(
03
), pp.
98
100
.
8.
Plett
,
G. L.
,
2004
, “
Extended Kalman Filtering for Battery Management Systems of LiPB-Based HEV Battery Packs: Part 3. State and Parameter Estimation
,”
J. Power Sources
,
134
(
2
), pp.
277
292
.
9.
Cai
,
X.
,
Li
,
B.
,
Wang
,
H. H.
,
Hou
,
J.
, and
Gao
,
T.
,
2015
, “
Research on Power Battery SOC Estimation Based on Neural Network Model
,”
Mech. Electric. Eng.
,
32
(
01
), pp.
128
132
.
10.
Zheng
,
Y.
,
Ouyang
,
M.
,
Han
,
X.
,
Lu
,
L.
, and
Li
,
J.
,
2018
, “
Investigating the Error Sources of the Online State of Charge Estimation Methods for Lithium-Ion Batteries in Electric Vehicles
,”
J. Power Sources
,
377
, pp.
161
188
.
11.
Dai
,
H.
,
Wei
,
X.
,
Sun
,
Z.
,
Wang
,
J.
, and
Gu
,
W.
,
2012
, “
Online Cell SOC Estimation of Li-Ion Battery Packs Using a Dual Time-Scale Kalman Filtering for EV Applications
,”
Appl. Energy
,
95
(
2
), pp.
227
237
.
12.
Plett
,
G. L.
,
2006
, “
Sigma-Point Kalman Filtering for Battery Management Systems of LIPB-Based HEV Battery Packs Part 1: Introduction and State Estimation
,”
J. Power. Sources
,
161
(
2
), pp.
1369
1384
.
13.
Tenno
,
A.
,
Tenno
,
R.
, and
Suntio
,
T.
,
2002
, “
Evaluation of VRLA Battery Under Overcharging: Model for Battery Testing
,”
J. Power Sources
,
111
(
1
), pp.
65
82
.
14.
Pascoe
,
P. E.
, and
Anbuky
,
A. H.
,
2004
, “
A VRLA Battery Simulation Model
,”
Energ. Convers. Manage.
,
45
(
7–8
), pp.
1015
1041
.
15.
Coleman
,
M.
,
Lee
,
C.
,
Zhu
,
C.
, and
Hurley
,
W.
,
2007
, “
State-of-Charge Determination From EMF Voltage Estimation: Using Impedance, Terminal Voltage, and Current for Lead-Acid and Lithium-Ion Batteries
,”
IEEE Trans. Ind. Electron.
,
54
(
5
), pp.
2550
2557
.
16.
Feng
,
T.
,
Yang
,
L.
,
Zhao
,
X.
,
Zhang
,
H.
, and
Qiang
,
J.
,
2015
, “
Online Identification of Lithium-Ion Battery Parameters Based on an Improved Equivalent-Circuit Model and its Implementation on Battery State-of-Power Prediction
,”
J. Power Sources
,
281
, pp.
192
203
.
17.
Wang
,
L.
,
Cheng
,
Y.
, and
Zou
,
J.
,
2014
, “
Battery Available Power Prediction of Hybrid Electric Vehicle Based on Improved Dynamic Matrix Control Algorithms
,”
J. Power Sources
,
261
, pp.
337
347
.
18.
Johnson
,
V. H.
,
2002
, “
Battery Performance Models in ADVISOR
,”
J. Power Sources
,
110
(
2
), pp.
321
329
.
19.
Nelson
,
P.
,
Bloom
,
I.
,
Amine
,
K.
, and
Henriksen
,
G.
,
2002
, “
Design Modeling of Lithium-Ion Battery Performance
,”
J. Power Sources
,
110
(
2
), pp.
437
444
.
20.
Cheng
,
Y. B.
, and
Han
,
R. C.
,
2019
, “
Analysis and Comparison of PNGV Model and Second-Order RC Model for Lithium Batteries
,”
J. Taiyuan. Univ. Sci. Tech.
,
40
(
06
), pp.
430
436
.
21.
Xu
,
J.
,
Mi
,
C. C.
,
Cao
,
B.
, and
Cao
,
J.
,
2013
, “
A New Method to Estimate the State of Charge of Lithium-Ion Batteries Based on the Battery Impedance Model
,”
J. Power Sources
,
233
(
4
), pp.
277
284
.
22.
Sabatier
,
J.
,
Cugnet
,
M.
,
Laruelle
,
S.
,
Sahut
,
B.
,
Oustaloup
,
A.
, and
Tarascon
,
M.
,
2010
, “
A Fractional Order Model for Lead-Acid Battery Crankability Estimation
,”
J. Commun. Nonlinear. Sci.
,
15
(
5
), pp.
1308
1317
.
23.
Li
,
Z.
,
Huang
,
J.
,
Liaw
,
B. Y.
, and
Zhang
,
J.
,
2017
, “
On State-of-Charge Determination for Lithium-Ion Batteries
,”
J. Power Sources
,
348
, pp.
281
301
.
24.
Barre
,
A.
,
Deguilhem
,
B.
,
Grolleau
,
S.
,
Gerard
,
M.
,
Suard
,
F.
, and
Riu
,
D.
,
2013
, “
A Review on Lithium-Ion Battery Ageing Mechanisms and Estimations for Automotive Applications
,”
J. Power Sources
,
241
, pp.
680
689
.
25.
Hu
,
X.
,
Feng
,
F.
,
Liu
,
K.
,
Zhang
,
L.
,
Xie
,
J. L.
, and
Liu
,
B.
,
2019
, “
State Estimation for Advanced Battery Management: Key Challenges and Future Trends
,”
Renew. Sust. Energ. Rev.
,
114
, p.
109334
. .
26.
Goh
,
T.
,
Park
,
M.
,
Seo
,
M.
,
Kim
,
J. G.
, and
Kim
,
S. W.
,
2017
, “
Capacity Estimation Algorithm With a Second-Order Differential Voltage Curve for Li-Ion Batteries With NMC Cathodes
,”
Energy
,
135
, pp.
257
268
.
27.
Weng
,
C. H.
,
Cui
,
Y. J.
,
Sun
,
J.
, and
Peng
,
J.
,
2013
, “
On-Board State of Health Monitoring of Lithium Ion Batteries Using Incremental Capacity Analysis With Support Vector Regression
,”
J. Power Sources
,
235
, pp.
36
44
.
28.
Zheng
,
X.
, and
Fang
,
H.
,
2015
, “
An Integrated Unscented Kalman Filter and Relevance Vector Regression Approach for Lithium-Ion Battery Remaining Useful Life and Short-Term Capacity Prediction
,”
Reliab. Eng. Syst. Saf.
,
144
, pp.
74
82
.
29.
Gould
,
C. R.
,
Bingham
,
C. M.
,
Stone
,
D. A.
, and
Betley
,
P.
,
2009
, “
New Battery Model and State-of-Health Determination Through Subspace Parameter Estimation and State-Observer Techniques
,”
IEEE Trans. Veh. Technol.
,
58
(
8
), pp.
3905
3916
.
30.
Xiong
,
R.
,
Sun
,
F.
,
Chen
,
Z.
, and
He
,
H.
,
2014
, “
A Data-Driven Multi-scale Extended Kalman Filtering Based Parameter and State Estimation Approach of Lithium-Ion Olymer Battery in Electric Vehicles
,”
Appl. Energy.
,
113
, pp.
463
476
.
31.
Xiong
,
R.
,
Sun
,
F. C.
,
Gong
,
X. Z.
, and
Gao
,
C.
,
2013
, “
A Data-Driven Based Adaptive State of Charge Estimator of Lithium-Ion Polymer Battery Used in Electric Vehicles
,”
Energy
,
63
(
6
), pp.
1421
1433
.
32.
Chen
,
J.
,
Xiao
,
Z. F.
,
Liu
,
S. C.
,
Luo
,
L. X.
, and
Xia
,
X. Y.
,
2020
, “
Accurate Estimation of SOC and SOH of Lithium Ion Battery Based on EKF-SVSF
,”
Power Supply Technol.
,
44
(
10
), pp.
1483
1487
.
33.
Tian
,
Y.
,
Chen
,
C.
,
Xia
,
B.
,
Sun
,
W.
,
Xu
,
Z.
, and
Zheng
,
W.
,
2014
, “
An Adaptive Gain Nonlinear Observer for State of Charge Estimation of Lithium-Ion Batteries in Electric Vehicles
,”
Energies
,
7
(
9
), pp.
5995
6012
.
34.
Du
,
J.
,
Liu
,
Z.
,
Wang
,
Y.
, and
Wen
,
C.
,
2016
, “
An Adaptive Sliding Mode Observer for Lithium-Ion Battery State of Charge and State of Health Estimation in Electric Vehicles
,”
Control. Eng. Pract.
,
54
, pp.
81
90
.
35.
Westerlund
,
S.
, and
Ekstam
,
L.
,
1994
, “
“Capacitor Theory,” Dielectrics and Electrical Insulation
,”
IEEE Trans.
,
1
(
5
), pp.
826
839
.
36.
Martynyuk
,
V.
, and
Ortigueira
,
M.
,
2015
, “
Fractional Model of an Electrochemical Capacitor
,”
Signal. Process.
,
107
(
C
), pp.
355
360
.
37.
Zhu
,
Q.
,
Li
,
L.
,
Hu
,
X.
,
Xiong
,
N.
, and
Hu
,
G.
,
2017
, “
H∞-Based Nonlinear Observer Design for State of Charge Estimation of Lithium-Ion Battery With Polynomial Parameters
,”
IEEE Trans. Veh. Technol.
,
99
(
99
), pp.
1
13
.
38.
Zhang
,
C.
,
Xu
,
X. H.
,
Sun
,
H. S.
, and
Zhou
,
X.
,
2014
, “
Research on Intelligent Charging Strategy of Large-Scale Electric Vehicles Based on Adaptive Genetic Algorithm
,”
Power Syst. Protect. Control
,
42
(
14
), pp.
19
24
.
39.
Chowdhury
,
S.
,
Shaheed
,
M. N. B.
, and
Sozer
,
Y.
,
2019
, “
An Integrated State of Health (SOH) Balancing Method for Lithium-Ion Battery Cells
,”
2019 IEEE Energy Conversion Congress and Exposition
,
Baltimore, MD
,
Sept. 29– Oct. 3
, pp.
5759
5763
.
40.
Yang
,
A.
,
Wang
,
Y.
,
Tsui
,
K. L.
, and
Zi
,
Y.
,
2019
, “
Lithium-Ion Battery SOH Estimation and Fault Diagnosis With Missing Data
,”
Proceedings of the IEEE International Instrumentation and Measurement Technology Conference
,
Auckland, New Zealand
,
May 20–23
, pp.
1
6
.
41.
Lan
,
R. D.
,
Sung
,
H. W.
, and
Hsiang
,
F. Y.
,
2014
, “
An SOH Estimation System Based on Time-Constant-Ratio Measurement
,”
Proceedings of the IEEE 23rd International Symposium on Industrial Electronics
,
Istanbul, Turkey
,
June 1–4
, pp.
1784
1787
.
42.
Yan
,
H.
, and
Wang
,
F.
,
2019
, “
A Method of Strong Tracking UKF Based on Adaptive Constraints
,”
Information Technology, Networking, Electronic and Automation Control Conference
,
Chengdu, China
,
Mar. 15–17
, pp.
2339
2343
.
43.
Guo
,
B. F.
,
Zhang
,
P.
,
Wang
,
W. X.
, and
Wang
,
F. N.
,
2019
, “
Study on SOC Estimation of Lithium Iron Phosphate Battery Based on OCV-SOC Cluster
,”
Power Supply Technol.
,
43
(
7
), pp.
1125
1128
.
44.
Li
,
B.
,
Yuan
,
X. Q.
, and
Zhao
,
L.
,
2015
, “
Li-Ion Battery SOC Estimation Based on EKF Algorithm
,”
IEEE International Conference on Cyber Technology in Automation
,
Shenyang, China
,
June 6–8
, pp.
1584
1588
.
45.
Li
,
Y.
,
2017
, “
Investigation of the Impact of Battery Stack Monitor Accuracy on EKF-Based SOC Estimation Algorithms for Electric Vehicles
,”
IEEE Transportation and Electrification Conference and Expo.
,
Haerbin, China
,
Aug. 2–5, 2017
, pp.
474
478
.
46.
Xu
,
M.
,
Zhu
,
Q.
, and
Zheng
,
M.
,
2018
, “
A State of Charge Estimation Approach Based on Fractional Order Adaptive Extended Kalman Filter for Lithium-Ion Batteries
,”
IEEE Data Driven Control and Learning Systems Conference
,
Hubei, China
,
May 25–27
, pp.
271
276
.
47.
Liu
,
Z.
,
Zhe
,
L.
, and
Zhang
,
J.
,
2018
, “
Alternate Adaptive Extended Kalman Filter and Ampere-Hour Counting Method to Estimate the State of Charge
,”
IEEE International Power Electronics and Application Conference and Exposition
,
Shenzhen, China
,
Nov. 4–7
, pp.
2485
2488
.
48.
Liu
,
S.
,
Dong
,
X.
, and
Zhang
,
Y.
,
2019
, “
A New State of Charge Estimation Method for Lithium-Ion Battery Based on the Fractional Order Model
,”
IEEE Access
,
7
, pp.
122949
122954
.
49.
Zhu
,
Q.
,
Xu
,
M. E.
,
Liu
,
W. Q.
, and
Zheng
,
M. Q.
,
2019
, “
A State of Charge Estimation Method for Lithium-Ion Batteries Based on Fractional Order Adaptive Extended Kalman Filter
,”
Energy
,
187
, p.
115880
.
You do not currently have access to this content.