Abstract

The gas flow of carbon dioxide from the catalyst layer (CL) through the microporous layer (MPL) and gas diffusion layer (GDL) has great impacts on the water and fuel management in direct methanol fuel cells (DMFCs). This work has developed a liquid–vapor two-phase model considering the counter flow of carbon dioxide gas, methanol, and water liquid solution in porous electrodes of DMFC. The model simulation includes the capillary pressure as well as the pressure drop due to flow resistance through the fuel cell components. The pressure drop of carbon dioxide flow is found to be about two to three orders of magnitude higher than the pressure drop of the liquid flow. The big difference between liquid and gas pressure drops can be explained by two reasons: volume flowrate of gas is three orders of magnitude higher than that of liquid; only a small fraction of pores (<5%) in hydrophilic fuel cell components are available for gas flow. Model results indicate that the gas pressure and the mass transfer resistance of liquid and gas are more sensitive to the pore size distribution than the thickness of porous components. To buildup high gas pressure and high mass transfer resistance of liquid, the MPL and CL should avoid micro-cracks during manufacture. Distributions of pore size and wettability of the GDL and MPL have been designed to reduce the methanol crossover and improve fuel efficiency. The model results provide design guidance to obtain superior DMFC performance using highly concentrated methanol solutions or even pure methanol.

References

1.
Joghee
,
P.
,
Malik
,
J. N.
,
Pylypenko
,
S.
, and
O’Hayre
,
R.
,
2015
, “
A +Review on Direct Methanol Fuel Cells—In the Perspective of Energy and Sustainability
,”
MRS Energy Sustain.
,
2
(
1
). 10.1557/mre.2015.4
2.
Li
,
X.
, and
Faghri
,
A.
,
2013
, “
Review and Advances of Direct Methanol Fuel Cells (DMFCs) Part I: Design, Fabrication, and Testing With High Concentration Methanol Solutions
,”
J. Power Sources
,
226
(
15
), pp.
223
240
. 10.1016/j.jpowsour.2012.10.061
3.
Alias
,
M. S.
,
Kamarudin
,
S. K.
,
Zainoodin
,
A. M.
, and
Masdar
,
M. S.
,
2020
, “
Active Direct Methanol Fuel Cell: An Overview
,”
Int. J. Hydrog. Energy
,
45
(
38
), pp.
19620
19641
. 10.1016/j.ijhydene.2020.04.202
4.
Shrivastava
,
N. K.
,
Thombre
,
S. B.
, and
Chadge
,
R. B.
,
2016
, “
Liquid Feed Passive Direct Methanol Fuel Cell: Challenges and Recent Advances
,”
Ionics
,
22
(
1
), pp.
1
23
. 10.1007/s11581-015-1589-6
5.
Yang
,
H.
,
Zhao
,
T. S.
, and
Ye
,
Q.
,
2005
, “
In Situ Visualization Study of CO2 gas Bubble Behavior in DMFC Anode Flow Fields
,”
J. Power Sources
,
139
(
1–2
), pp.
79
90
. 10.1016/j.jpowsour.2004.05.033
6.
Li
,
M.
,
Liang
,
J.
,
Liu
,
C.
,
Sun
,
G.
, and
Zhao
,
G.
,
2009
, “
Effects of Anode Flow Field Design on CO2 Bubble Behavior in μDMFC
,”
Sensors
,
9
(
5
), pp.
3314
3324
. 10.3390/s90503314
7.
Xu
,
C.
,
He
,
Y. L.
,
Zhao
,
T. S.
,
Chen
,
R.
, and
Ye
,
Q.
,
2006
, “
Analysis of Mass Transport of Methanol at the Anode of a Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
,
153
(
7
), p.
A1358
. 10.1149/1.2201467
8.
Meyers
,
J. P.
, and
Newman
,
J.
,
2002
, “
Simulation of the Direct Methanol Fuel Cell : II. Modeling and Data Analysis of Transport and Kinetic Phenomena
,”
J. Electrochem. Soc.
,
149
(
6
), p.
A718
. 10.1149/1.1473189
9.
García
,
B. L.
,
Sethuraman
,
V. A.
,
Weidner
,
J. W.
,
White
,
R. E.
, and
Dougal
,
R.
,
2004
, “
Mathematical Model of a Direct Methanol Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
1
(
1
), pp.
43
48
. 10.1115/1.1782927
10.
Kulikovsky
,
A. A.
,
2003
, “
Analytical Model of the Anode Side of DMFC: the Effect of non-Tafel Kinetics on Cell Performance
,”
Electrochem. Commun.
,
5
(
7
), pp.
530
538
. 10.1016/S1388-2481(03)00115-2
11.
Wang
,
Y.
, and
Sauer
,
D. U.
,
2015
, “
Optimization of DMFC Regulation Based on Spatial Modeling
,”
Int. J. Hydrog. Energy
,
40
(
35
), pp.
12023
12033
. 10.1016/j.ijhydene.2015.06.030
12.
Miao
,
Z.
,
Xu
,
J.-L.
, and
He
,
Y.-L.
,
2014
, “
Modeling of the Transport Phenomena in Passive Direct Methanol Fuel Cells Using a Two-Phase Anisotropic Model
,”
Adv. Mech. Eng.
,
6
, p.
812706
. 10.1155/2014/812706
13.
García-Salaberri
,
P. A.
, and
Vera
,
M.
,
2016
, “
On the Effect of Operating Conditions in Liquid-Feed Direct Methanol Fuel Cells: A Multiphysics Modeling Approach
,”
Energy
,
113
, pp.
1265
1287
. 10.1016/j.energy.2016.07.074
14.
Jiang
,
J.
,
Li
,
Y.
,
Liang
,
J.
,
Yang
,
W.
, and
Li
,
X.
,
2019
, “
Modeling of High-Efficient Direct Methanol Fuel Cells With Order-Structured Catalyst Layer
,”
Appl. Energy
,
252
, p.
113431
. 10.1016/j.apenergy.2019.113431
15.
Wang
,
Z. H.
, and
Wang
,
C. Y.
,
2003
, “
Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
,
150
(
4
), p.
A508
. 10.1149/1.1559061
16.
Su
,
X.
,
Yuan
,
W.
,
Lu
,
B.
,
Zheng
,
T.
,
Ke
,
Y.
,
Zhuang
,
Z.
,
Zhao
,
Y.
,
Tang
,
Y.
, and
Zhang
,
S.
,
2020
, “
CO2 Bubble Behaviors and two-Phase Flow Characteristics in Single-Serpentine Sinusoidal Corrugated Channels of Direct Methanol Fuel Cell
,”
J. Power Sources
,
450
, p.
227621
. 10.1016/j.jpowsour.2019.227621
17.
He
,
Y.-L.
,
Li
,
X.-L.
,
Miao
,
Z.
, and
Liu
,
Y.-W.
,
2009
, “
Two-phase Modeling of Mass Transfer Characteristics of a Direct Methanol Fuel Cell
,”
Appl. Therm. Eng.
,
29
(
10
), pp.
1998
2008
. 10.1016/j.applthermaleng.2008.10.004
18.
Li
,
X.
,
2015
, “
A Modeling Study of the Pore Size Evolution in Lithium-Oxygen Battery Electrodes
,”
J. Electrochem. Soc.
,
162
(
8
), pp.
A1636
A1645
. 10.1149/2.0921508jes
19.
Inoue
,
G.
,
Yokoyama
,
K.
,
Ooyama
,
J.
,
Terao
,
T.
,
Tokunaga
,
T.
,
Kubo
,
N.
, and
Kawase
,
M.
,
2016
, “
Theoretical Examination of Effective Oxygen Diffusion Coefficient and Electrical Conductivity of Polymer Electrolyte Fuel Cell Porous Components
,”
J. Power Sources
,
327
, pp.
610
621
. 10.1016/j.jpowsour.2016.07.107
20.
Miao
,
Z.
,
Zihang
,
L.
,
Yaling
,
H.
,
Jinliang
,
X.
, and
Xianglin
,
L.
, “
A Liquid-Vapor Two-Phase Model of Direct Methanol Fuel Cells With PGM-Free Cathode Catalyst
,”
Energy, Under Review
.
21.
Kozbial
,
A.
,
Trouba
,
C.
,
Liu
,
H.
, and
Li
,
L.
,
2017
, “
Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles
,”
Langmuir
,
33
(
4
), pp.
959
967
. 10.1021/acs.langmuir.6b04193
22.
Goswami
,
S.
,
Klaus
,
S.
, and
Benziger
,
J.
,
2008
, “
Wetting and Absorption of Water Drops on Nafion Films
,”
Langmuir
,
24
(
16
), pp.
8627
8633
. 10.1021/la800799a
23.
Duan
,
Q.
,
Wang
,
H.
, and
Benziger
,
J.
,
2012
, “
Transport of Liquid Water Through Nafion Membranes
,”
J. Membr. Sci.
,
392–393
, pp.
88
94
. 10.1016/j.memsci.2011.12.004
24.
Vazquez
,
G.
,
Alvarez
,
E.
, and
Navaza
,
J. M.
,
1995
, “
Surface Tension of Alcohol Water + Water From 20 to 50. Degree.C
,”
J. Chem. Eng. Data
,
40
(
3
), pp.
611
614
. 10.1021/je00019a016
25.
Li
,
X.
,
Miao
,
Z.
,
Marten
,
L.
, and
Blankenau
,
I.
,
2020
, “
Experimental Measurements of Fuel and Water Crossover in an Active DMFC
,”
Int. J. Hydrog. Energy
,
46
(
5
), pp.
4437
4446
. 10.1016/j.ijhydene.2020.11.027
26.
Kim
,
H.
,
Lim
,
J.-H.
,
Lee
,
K.
, and
Choi
,
S. Q.
,
2020
, “
Direct Measurement of Contact Angle Change in Capillary Rise
,”
Langmuir
,
36
(
48
), pp.
14597
14606
. 10.1021/acs.langmuir.0c02372
27.
Xu
,
C.
,
Faghri
,
A.
, and
Li
,
X.
,
2010
, “
Development of a High Performance Passive Vapor-Feed DMFC Fed With Neat Methanol
,”
J. Electrochem. Soc.
,
157
(
8
), pp.
B1109
B1117
. 10.1149/1.3435256
28.
Sun
,
J.
,
Zhang
,
G.
,
Guo
,
T.
,
Che
,
G.
,
Jiao
,
K.
, and
Huang
,
X.
,
2020
, “
Effect of Anisotropy in Cathode Diffusion Layers on Direct Methanol Fuel Cell
,”
Appl. Therm. Eng.
,
165
, p.
114589
. 10.1016/j.applthermaleng.2019.114589
You do not currently have access to this content.