Abstract

In this paper, we report the fabrication of activated carbon nanofibers/cobalt ferrite (CNF/CoFe2O4) composites by electrospinning and hydrothermal methods for comparative study of electrochemical properties. The structural, morphological, and compositional analyses of the synthesized composites were examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy. CNF/CoFe2O4 electrodes were investigated for electrochemical behavior using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge (GCD). The results showed that hydrothermally synthesized CNF/CoFe2O4 composite exhibited the specific capacitance 188.36 F/g, whereas electrospun CNF/CoFe2O4 composite resulted the specific capacitance 106.59 F/g at lowest current density 0.5 A/g. 80% capacitance retention of CNF/CoFe2O4 prepared by hydrothermal as compared with 60% capacitance retention of CNF/CoFe2O4 prepared by electrospinning. These results concluded that CNF/CoFe2O4 electrode obtained by hydrothermal exhibited comparatively excellent electrochemical performance and found its suitability as electrodes for supercapacitors.

References

1.
Fu
,
M.
,
Chen
,
W.
,
Ding
,
J.
,
Zhu
,
X.
, and
Liu
,
Q.
,
2019
, “
Biomass Waste Derived Multi-Hierarchical Porous Carbon Combined With CoFe2O4 as Advanced Electrode Materials for Supercapacitor
,”
J. Alloy. Compd.
,
782
, pp.
952
960
. 10.1016/j.jallcom.2018.12.244
2.
Azwar
,
E.
,
Mahari
,
W. A. W.
,
Chuah
,
J. H.
,
Vo
,
D. V. N.
,
Ma
,
N. L.
,
Lam
,
W. H.
, and
Lam
,
S. S.
,
2018
, “
Transformation of Biomass Into Carbon Nanofiber for Supercapacitor Application—A Review
,”
Int. J. Hydrogen Energy
,
43
(
45
), pp.
20811
20821
. 10.1016/j.ijhydene.2018.09.111
3.
Iro
,
Z. S.
,
Subramani
,
C.
, and
Dash
,
S. S.
,
2016
, “
A Brief Review on Electrode Materials for Supercapacitor
,”
Int. J. Electrochem. Sci.
,
11
, pp.
10628
10643
. 10.20964/2016.12.50
4.
Xue
,
G.
,
Zhang
,
J.
,
Cheng
,
Y.
, and
Wang
,
W.
,
2016
, “
Facile Fabrication of Cross-Linked Carbon Nanofiber via Directly Carbonizing Electrospun Polyacrylonitrile Nanofiber as High-Performance Scaffold for Supercapacitors
,”
Electrochim. Acta
,
215
, pp.
29
35
. 10.1016/j.electacta.2016.08.063
5.
Kim
,
B. H.
,
Yang
,
K. S.
, and
Ferraris
,
J. P.
,
2012
, “
Highly Conductive, Mesoporous Carbon Nanofiber Web as Electrode Material for High-Performance Supercapacitors
,”
Electrochim. Acta
,
75
, pp.
325
331
. 10.1016/j.electacta.2012.05.004
6.
Dong
,
Y.
,
Lin
,
H.
,
Zhou
,
D.
,
Niu
,
H.
,
Jin
,
Q.
, and
Qu
,
F.
,
2015
, “
Synthesis of Mesoporous Graphitic Carbon Fibers With High Performance for Supercapacitor
,”
Electrochim. Acta
,
159
, pp.
116
123
. 10.1016/j.electacta.2015.01.152
7.
Zhang
,
L.
,
Jiang
,
Y.
,
Wang
,
L.
,
Zhang
,
C.
, and
Liu
,
S.
,
2016
, “
Hierarchical Porous Carbon Nanofibers as Binder-Free Electrode for High-Performance Supercapacitor
,”
Electrochim. Acta
,
196
, pp.
189
196
. 10.1016/j.electacta.2016.02.050
8.
Liu
,
Q.
,
Zhu
,
J.
,
Zhang
,
L.
, and
Qiu
,
Y.
,
2018
, “
Recent Advances in Energy Materials by Electrospinning
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
1825
1858
. 10.1016/j.rser.2017.05.281
9.
He
,
Y.
,
Wang
,
L.
, and
Jia
,
D.
,
2016
, “
Coal/PAN Interconnected Carbon Nanofibers With Excellent Energy Storage Performance and Electrical Conductivity
,”
Electrochem. Acta
,
194
, pp.
239
245
. 10.1016/j.electacta.2016.01.191
10.
Kore
,
R. M.
, and
Lokhande
,
B. J.
,
2017
, “
A Robust Solvent Deficient Route Synthesis of Mesoporous Fe2O3 Nanoparticles as Supercapacitor Electrode Material With Improved Capacitive Performance
,”
J. Alloy. Compd.
,
725
, pp.
129
138
. 10.1016/j.jallcom.2017.07.145
11.
Khavale
,
S. V.
, and
Lokhande
,
B. J.
,
2017
, “
Electrochemical Performance of Potentio-Dynamically Deposited Co3O4 Electrodes: Influence of Annealing Temperature
,”
J. Mater. Sci.: Mater. Electron.
,
28
(
7
), pp.
5106
5115
. 10.1007/s10854-016-6166-x
12.
Ambare
,
R. C.
,
Shinde
,
P.
,
Nakate
,
U. T.
,
Lokhande
,
B. J.
, and
Mane
,
R. S.
,
2018
, “
Sprayed Bismuth Oxide Interconnected Nanoplate Supercapacitor Electrode Materials
,”
Appl. Surf. Sci.
,
453
, pp.
214
219
. 10.1016/j.apsusc.2018.05.090
13.
Choudhury
,
A.
,
Kim
,
J. H.
,
Yang
,
K. S.
, and
Yang
,
D. J.
,
2016
, “
Facile Synthesis of Self-Standing Binder-Free Vanadium Pentoxide-Carbon Nanofiber Composites for High-Performance Supercapacitors
,”
Electrochim. Acta
,
213
, pp.
400
407
. 10.1016/j.electacta.2016.06.111
14.
Xiong
,
P.
,
Huang
,
H.
, and
Wang
,
X.
,
2014
, “
Design and Synthesis of Ternary Cobalt Ferrite/Graphene/Polyaniline Hierarchical Nanocomposites for High-Performance Supercapacitors
,”
J. Power Sources
,
245
, pp.
937
946
. 10.1016/j.jpowsour.2013.07.064
15.
Sagu
,
J. S.
,
Wijayantha
,
K. G. U.
, and
Tahir
,
A. A.
,
2017
, “
The Pseudocapacitive Nature of CoFe2O4 Thin Films
,”
Electrochem. Acta
,
246
, pp.
870
878
. 10.1016/j.electacta.2017.06.110
16.
Yue
,
L.
,
Zhang
,
S.
,
Zhao
,
H.
,
Feng
,
Y.
,
Wang
,
M.
,
An
,
L.
,
Zhang
,
X.
, and
Mi
,
J.
,
2019
, “
One-Pot Synthesis CoFe2O4/CNTs Composite for Asymmetric Supercapacitor Electrode
,”
Solid State Ionics
,
329
, pp.
15
24
. 10.1016/j.ssi.2018.11.006
17.
Xiao
,
Y.
,
Li
,
X.
,
Zai
,
J.
,
Wang
,
K.
,
Gong
,
Y.
,
Li
,
B.
,
Han
,
Q.
, and
Qian
,
X.
,
2014
, “
CoFe2O4-Graphene Nanocomposites Synthesized Through An Ultrasonic Method With Enhanced Performances as Anode Materials for Li-Ion Batteries
,”
Nano-Micro Lett.
,
6
(
4
), pp.
307
315
. 10.1007/s40820-014-0003-7
18.
Sankar
,
K. V.
, and
Selvan
,
R. K.
,
2016
, “
Fabrication of Flexible Fiber Supercapacitor Using Covalently Grafted CoFe2O4/Reduced Graphene Oxide/Polyaniline and Its Electrochemical Performance
,”
Electrochem. Acta
,
213
, pp.
469
481
. 10.1016/j.electacta.2016.07.056
19.
Anwane
,
R. S.
,
Kondawar
,
S. B.
, and
Late
,
D. J.
,
2018
, “
Bessel’s Polynomial Fitting for Electrospun Polyacrylonitrile/Polyaniline Blend Nanofibers Based Ammonia Sensor
,”
Mater. Lett.
,
221
, pp.
70
73
. 10.1016/j.matlet.2018.03.075
20.
Pangul
,
C. N.
,
Anwane
,
S. W.
, and
Kondawar
,
S. B.
,
2018
, “
Enhanced Photoluminescence Properties of Electrospun Dy3+-Doped ZnO Nanofibres for White Lighting Devices
,”
Luminescence
,
33
(
6
), pp.
1087
1093
. 10.1002/bio.3513
21.
Bhute
,
M. V.
, and
Kondawar
,
S. B.
,
2019
, “
Electrospun Poly(Vinylidene Fluoride)/Cellulose Acetate/AgTiO2 Nanofibers Polymer Electrolyte Membrane for Lithium Ion Battery
,”
Solid State Ionics
,
333
, pp.
38
44
. 10.1016/j.ssi.2019.01.019
22.
Li
,
X.
,
Zhao
,
Y.
,
Bai
,
Y.
,
Zhao
,
X.
,
Wang
,
R.
,
Huang
,
Y.
,
Liang
,
Q.
, and
Huang
,
Z.
,
2017
, “
A Non-Woven Network of Porous Nitrogen-Doping Carbon Nanofibers as a Binder-Free Electrode for Supercapacitors
,”
Electrochim. Acta
,
230
, pp.
445
453
. 10.1016/j.electacta.2017.02.030
23.
Song
,
Y.
,
Yang
,
J.
,
Wang
,
K.
,
Haller
,
S.
,
Wang
,
Y.
,
Wang
,
C.
, and
Xia
,
Y.
,
2016
, “
In-Situ Synthesis of Graphene/Nitrogen-Doped Ordered Mesoporous Carbon Nanosheet for Supercapacitor Application
,”
Carbon.
,
96
, pp.
955
964
. 10.1016/j.carbon.2015.10.060
24.
Yun
,
Y. S.
,
Im
,
C.
,
Park
,
H. H.
,
Hwang
,
I.
,
Tak
,
Y.
, and
Jin
,
H. J.
,
2013
, “
Hierarchically Porous Carbon Nanofibers Containing Numerous Heteroatoms for Supercapacitors
,”
J. Power Sources
,
234
, pp.
285
291
. 10.1016/j.jpowsour.2013.01.169
You do not currently have access to this content.