Abstract

The fire hazard of lithium-ion batteries (LIBs) poses a serious threat to their transportation and use. The purpose of this study is to investigate the efficiency of low-pressure twin-fluid water mist (TFWM) on suppressing lithium-ion battery fires. Experiments were executed to research the effect of working pressures and release stages on extinguishing the fire. Aqueous vermiculite dispersion (AVD), a commercial agent that was specifically designed to extinguish battery fires, was chosen to compare with the fire suppression performance of TFWM under the same conditions. The results indicate that the type 21,700 LIB fires could be controlled by applying the water mist within 10 s. The cooling ability at various working pressures (0.4, 0.8, 1.0, and 1.2 MPa) demonstrated an increase in inhibitory effects as the working pressure increased, and the optimal pressure was 1.2 MPa. The results further show that the extinguishing ability of the TFWM was better than the AVD agent. When the water mist was applied at the optimal working pressure, the surface temperature, flame temperature and concentration of CO reduced more significantly, compared with the AVD agent. Therefore, the TFWM shows considerable merit as a candidate to fight LIB fires.

References

1.
Wang
,
Q.
,
Ping
,
P.
,
Zhao
,
X.
,
Chu
,
G.
,
Sun
,
J.
, and
Chen
,
C.
,
2012
, “
Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery
,”
J. Power Sources
,
208
, pp.
210
224
. 10.1016/j.jpowsour.2012.02.038
2.
Fernandes
,
Y.
,
Bry
,
A.
, and
de Persis
,
S.
,
2018
, “
Identification and Quantification of Gases Emitted During Abuse Tests by Overcharge of a Commercial Li-Ion Battery
,”
J. Power Sources
,
389
, pp.
106
119
. 10.1016/j.jpowsour.2018.03.034
3.
Federal Aviation Administration
,
2020
,
Events With Smoke, Fire, Extreme Heat or Explosion Involving Lithium Batteries
,
FAA Office of Security and Hazardous Materials Safety
,
Washington
.
4.
Wang
,
Q.
,
Shao
,
G.
, and
Duan
,
Q.
,
2015
, “
The Efficiency of Heptafluoropropane Fire Extinguishing Agent on Suppressing the Lithium Titanate Battery Fire
,”
Fire Technol.
,
52
(
2
), pp.
387
396
. 10.1007/s10694-015-0531-9
5.
Wang
,
Q.
,
Li
,
K.
,
Wang
,
Y.
,
Chen
,
H.
,
Duan
,
Q.
, and
Sun
,
J.
,
2018
, “
The Efficiency of Dodecafluoro-2-Methylpentan-3-One on Suppressing the Lithium Ion Battery Fire
,”
ASME J. Electrochem. Energy Convers. Storage
,
15
(
4
), p.
041001
. 10.1115/1.4039418
6.
Si
,
R.
,
Liu
,
D.
, and
Xue
,
S.
,
2018
, “
Experimental Study on Fire and Explosion Suppression of Self-Ignition of Lithium Ion Battery
,”
Procedia Eng.
,
211
, pp.
629
634
. 10.1016/j.proeng.2017.12.057
7.
Said
,
A. O.
,
Lee
,
C.
,
Stoliarov
,
S. I.
, and
Marshall
,
A. W.
,
2019
, “
Comprehensive Analysis of Dynamics and Hazards Associated With Cascading Failure in 18650 Lithium Ion Cell Arrays
,”
Appl. Energy
,
248
, pp.
415
428
. 10.1016/j.apenergy.2019.04.141
8.
Li
,
J.
,
Zhang
,
Z.
,
Guo
,
X.
, and
Yang
,
Y.
,
2006
, “
The Studies on Structural and Thermal Properties of Delithiated LixNi1/3Co1/3Mn1/3O2 (0<x≤1) as a Cathode Material in Lithium Ion Batteries
,”
Solid State Ionics
,
177
(
17–18
), pp.
1509
1516
. 10.1016/j.ssi.2006.03.055
9.
Federal Aviation Administration
,
2014
,
Extinguishment of Lithium-Ion and Lithium-Metal Battery Fires
,
Federal Aviation Administration William J. Hughes Technical Center
,
Washington
.
10.
Wang
,
H.
,
Sun
,
Q.
,
Guo
,
J.
,
Xie
,
S.
,
He
,
Y.
, and
Chen
,
X.
,
2021
, “
The Efficiency of Aqueous Vermiculite Dispersion Fire Extinguishing Agent on Suppressing Three Typical Power Batteries
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
2
), p.
020901
. 10.1115/1.4048368
11.
Federal Aviation Administration
,
2016
,
Lithium Battery Thermal Runaway Vent Gas Analysis
,
Federal Aviation Administration William J. Hughes Technical Center
,
Washington
.
12.
Blum
,
A.
, and
Long
,
R. T.
,
2015
, “
Full-Scale Fire Tests of Electric Drive Vehicle Batteries
,”
SAE Int. J. Passeng. Cars Mech. Syst.
,
8
(
2
), pp.
565
572
. 10.4271/2015-01-1383
13.
Liu
,
Z.
, and
Kim
,
A. K.
,
1999
, “
A Review of Water Mist Fire Suppression Systems-Fundamental Studies
,”
J. Fire Prot. Eng.
,
10
(
3
), pp.
32
50
. https://doi.org/10.1177/104239159901000303
14.
Liu
,
T.
,
Liu
,
Y.
,
Wang
,
X.
,
Kong
,
X.
, and
Li
,
G.
,
2019
, “
Cooling Control of Thermally-Induced Thermal Runaway in 18,650 Lithium Ion Battery With Water Mist
,”
Energy Conv. Manag.
,
199
, p.
111969
. 10.1016/j.enconman.2019.111969
15.
Andersson
,
P.
,
Arvidson
,
M.
,
Evegren
,
F.
,
Jandali
,
M.
,
Larsson
,
F.
, and
Rosengren
,
M.
,
2018
,
Lion Fire: Extinguishment and Mitigation of Fires in Li-Ion Batteries at Sea
,
RISE Research Institutes of Sweden
:
RISE Report, Sweden
.
77
, pp.
26
27
.
16.
Yoon
,
S. H.
,
Kim
,
D. Y.
,
Kim
,
D. K.
, and
Kim
,
B. H.
,
2011
, “
Effect of Nozzle Geometry for Swirl Type Twin-Fluid Water Mist Nozzle on the Spray Characteristic
,”
Energy Conv. Manag.
,
25
(
7
), pp.
1761
1766
. https://doi.org/10.1007/s12206-011-0506-9
17.
Gupta
,
M.
,
Pasi
,
A.
,
Ray
,
A.
, and
Kale
,
S. R.
,
2013
, “
An Experimental Study of the Effects of Water Mist Characteristics on Pool Fire Suppression
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
768
778
. 10.1016/j.expthermflusci.2012.09.020
18.
Yu
,
H. Z.
,
Kasiski
,
R.
, and
Daelhousen
,
M.
,
2014
, “
Characterization of Twin-Fluid (Water Mist and Inert Gas) Fire Extinguishing Systems by Testing and Modeling
,”
Fire Technol.
,
51
(
4
), pp.
923
950
. 10.1007/s10694-014-0428-z
19.
Devarakonda
,
L.
, and
Hu
,
T.
,
2015
, “
Effects of Rest Time on Discharge Response and Equivalent Circuit Model for a Lead-Acid Battery
,”
J. Power Sources
,
282
, pp.
19
27
. 10.1016/j.jpowsour.2015.02.030
20.
Zhang
,
L.
,
Duan
,
Q.
, and
Liu
,
Y.
,
2020
, “
Experimental Investigation of Water Spray on Suppressing Lithium-ion Battery Fires
,”
Fire Saf. J.
,
10
, p.
103117
. 10.1016/j.firesaf.2020.103117
21.
Incropera
,
F. P.
,
Lavine
,
A. S.
,
Bergman
,
T. L.
, and
DeWitt
,
D. P.
,
2017
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley, SUA
,
New York
.
22.
Sovania
,
S. D.
,
Sojkaa
,
P. E.
, and
Lefebvreb
,
A. H.
,
2001
, “
Effervescent Atomization
,”
Prog. Energy Combust. Sci.
,
27
(
4
), pp.
483
521
. 10.1016/S0360-1285(00)00029-0
You do not currently have access to this content.