Abstract

Lithium-ion battery (LIB), as energy storage devices, is widely used in portable electronic devices and have promising applications in electric vehicles. The volume change and large stress can lead to electrode pulverization and the resultant loss of electrical contact from the current collector, which is considered to be one of the main reasons for the capacity degradation of LIB. To reduce diffusion-induced stress of the electrode system during lithium-ion diffusion, a chemo-mechanical coupled theoretical model of bilayer electrode system of electrode layer bonded to the current collector is established. The theoretical results show that diffusion-induced stresses at the electrode–collector interface and maximum tensile stress at the top surface of the electrode layer are alleviated greatly by introducing pre-strain. The effects of pre-strain and lithium-ion concentration on chemo-mechanical coupled behavior of the bilayer electrode system are discussed. In particular, the lithium-ion concentration difference strongly depends on the diffusion thickness and time. The curvature when considering plastic deformation is smaller than that when not considering the plastic deformation. In addition, the effects of plastic deformation of the current collector and diffusion time on biaxial stress distribution are also discussed. The biaxial stress decreases with the increase of pre-strain and decrease of dimensionless time during galvanostatic charging. The biaxial stress when considering plastic deformation is smaller than that when not considering the plastic deformation. The results obtained from this investigation will provide a reference to reduce the diffusion-induced stress and improve the ion diffusion performance of LIB.

References

1.
Xu
,
J.
,
Liu
,
B. H.
,
Wang
,
L. B.
, and
Shang
,
S.
,
2015
, “
Dynamic Mechanical Integrity of Cylindrical Lithium-Ion Battery Cell upon Crushing
,”
Eng. Fail. Anal.
,
53
, pp.
97
110
. 10.1016/j.engfailanal.2015.03.025
2.
Hao
,
W. Q.
,
Xie
,
J. M.
, and
Wang
,
F. H.
,
2018
, “
The Indentation Analysis Triggering Internal Short Circuit of Lithium-Ion Pouch Battery Based on Shape Function Theory
,”
Int. J. Energ. Res.
,
42
(
11
), pp.
3696
3703
. 10.1002/er.4109
3.
Abada
,
S.
,
Marlair
,
G.
,
Lecocq
,
A.
,
Petit
,
M.
,
Sauvant-Moynot
,
V.
, and
Huet
,
F.
,
2016
, “
Safety Focused Modeling of Lithium-Ion Batteries: A Review
,”
J. Power Sources
,
306
, pp.
178
192
. 10.1016/j.jpowsour.2015.11.100
4.
Liu
,
B. H.
,
Zhao
,
H.
,
Yu
,
H. L.
,
Li
,
J.
, and
Xu
,
J.
,
2017
, “
Multiphysics Computational Framework for Cylindrical Lithium-Ion Batteries Under Mechanical Abusive Loading
,”
Electrochim. Acta
,
256
, pp.
172
184
. 10.1016/j.electacta.2017.10.045
5.
Hao
,
W. Q.
,
Xie
,
J. M.
,
Bo
,
X. Q.
, and
Wang
,
F. H.
,
2019
, “
Resistance Exterior Force Property of Lithium-Ion Pouch Batteries With Different Positive Materials
,”
Int. J. Energ. Res.
,
43
(
9
), pp.
4976
4986
. 10.1002/er.4588
6.
Hao
,
W. Q.
,
Xie
,
J. M.
,
Zhang
,
X.
,
Wang
,
P.
, and
Wang
,
F. H.
,
2020
, “
Strain Rate Effect and Micro-buckling Behavior of Anisotropy Macromolecular Separator for Lithium-Ion Battery
,”
Express Polym. Lett.
,
14
(
3
), pp.
206
219
. 10.3144/expresspolymlett.2020.18
7.
Song
,
X.
,
Lu
,
Y. J.
,
Shi
,
M. L.
,
Zhao
,
X.
, and
Wang
,
F. H.
,
2018
, “
Effects of Plastic Deformation in Current Collector on Lithium Diffusion and Stress in Bilayer Lithium-Ion Battery Electrode
,”
Acta Phys. Sin.
,
67
(
14
), p.
140201
.
8.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
. 10.1038/35104644
9.
Vetter
,
J.
,
Novák
,
P.
,
Wagner
,
M. R.
,
Veit
,
C.
,
Möller
,
K. C.
,
Besenhard
,
K. C.
,
Winter
,
M.
,
Wohlfahrt-Mehrens
,
M.
,
Vogler
,
C.
, and
Hammouche
,
A.
,
2005
, “
Ageing Mechanisms in Lithium-Lon Batteries
,”
J. Power Sources
,
147
(
1–2
), pp.
269
281
. 10.1016/j.jpowsour.2005.01.006
10.
Zhang
,
K.
,
Zhang
,
Y. W.
,
Zhou
,
J. W.
,
Li
,
Y.
,
Zheng
,
B. L.
,
Yang
,
F. Q.
, and
Kai
,
Y.
,
2020
, “
A Stress-Based Charging Protocol for Silicon Anode in Lithium-Ion Battery: Theoretical and Experimental Studies
,”
J. Energy Storage
,
32
, p.
101765
. 10.1016/j.est.2020.101765
11.
Wang
,
Y.
, and
Yu
,
F. Q.
,
2021
, “
Probing the Morphology Dependence, Size Preference and Electron/Ion Conductance of Manganese-Based Lithium Transition-Metal Phosphate as Cathode Materials for High-Performance Lithium-Ion Battery
,”
J. Alloy. Compd.
,
850
, p.
156773
. 10.1016/j.jallcom.2020.156773
12.
Chen
,
B.
,
Zhou
,
J.
, and
Cai
,
R.
,
2016
, “
Analytical Model for Crack Propagation in Spherical Nano Electrodes of Lithium-Ion Batteries
,”
Electrochim. Acta
,
210
, pp.
7
14
. 10.1016/j.electacta.2016.05.136
13.
Brassart
,
L.
,
Zhao
,
K.
, and
Suo
,
Z.
,
2013
, “
Cyclic Plasticity and Shakedown in High-Capacity Electrodes of Lithium-Ion Batteries
,”
Int. J. Solids Struct.
,
50
(
7–8
), pp.
1120
1129
. 10.1016/j.ijsolstr.2012.12.019
14.
Grantab
,
R.
, and
Shenoy
,
V. B.
,
2011
, “
Location- and Orientation-Dependent Progressive Crack Propagation in Cylindrical Graphite Electrode Particles
,”
J. Electrochem. Soc.
,
158
(
8
), pp.
A948
A954
. 10.1149/1.3601878
15.
Li
,
Y.
,
Zhang
,
K.
, and
Zheng
,
B.
,
2014
, “
Stress Analysis in Spherical Composition-Gradient Electrodes of Lithium-Ion Battery
,”
J. Electrochem. Soc.
,
162
(
1
), pp.
A223
A228
. 10.1149/2.1021501jes
16.
Deshpande
,
R.
,
Cheng
,
Y. T.
, and
Verbrugge
,
M. W.
,
2010
, “
Modeling Diffusion-Induced Stress in Nanowire Electrode Structures
,”
J. Power Sources
,
195
(
15
), pp.
5081
5088
. 10.1016/j.jpowsour.2010.02.021
17.
Hao
,
F.
, and
Fang
,
D.
,
2013
, “
Diffusion-Induced Stresses of Spherical Core-Shell Electrodes in Lithium-Ion Batteries: The Effects of the Shell and Surface/Interface Stress
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
A595
A600
. 10.1149/2.054304jes
18.
Deshpande
,
R.
,
Cheng
,
Y. T.
,
Verbrugge
,
M. W.
, and
Timmons
,
A.
,
2011
, “
Diffusion Induced Stresses and Strain Energy in a Phase-Transforming Spherical Electrode Particle
,”
J. Electrochem. Soc.
,
158
(
6
), pp.
A718
A724
. 10.1149/1.3565183
19.
Christensen
,
J.
, and
Newman
,
J.
,
2006
, “
Stress Generation and Fracture in Lithium Insertion Materials
,”
J. Solid State Electr.
,
10
(
5
), pp.
293
319
. 10.1007/s10008-006-0095-1
20.
Zhao
,
K.
,
Pharr
,
M.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2011
, “
Inelastic Hosts as Electrodes for High-Capacity Lithium-Ion Batteries
,”
J. Appl. Phys.
,
109
(
1
), p.
016110
. 10.1063/1.3525990
21.
Cui
,
Z.
,
Gao
,
F.
, and
Qu
,
J.
,
2012
, “
A Finite Deformation Stress-Dependent Chemical Potential and Its Applications to Lithium Ion Batteries
,”
J. Mech. Phys. Solids
,
60
(
7
), pp.
1280
1295
. 10.1016/j.jmps.2012.03.008
22.
Zhang
,
J. Q.
,
Lu
,
B.
,
Song
,
Y. C.
, and
Ji
,
X.
,
2012
, “
Diffusion Induced Stress in Layered Li-Ion Battery Electrode Plates
,”
J. Power Sources
,
209
, pp.
220
227
. 10.1016/j.jpowsour.2012.02.104
23.
Song
,
Y. C.
,
Lu
,
B.
,
Ji
,
X.
, and
Zhang
,
J. Q.
,
2012
, “
Diffusion Induced Stresses in Cylindrical Lithium-Ion Batteries: Analytical Solutions and Design Insights
,”
J. Electrochem. Soc.
,
159
(
12
), pp.
A2060
A2068
. 10.1149/2.079212jes
24.
Song
,
Y. C.
,
Li
,
Z. Z.
, and
Zhang
,
J. Q.
,
2014
, “
Reducing Diffusion Induced Stress in Planar Electrodes by Plastic Shakedown and Cyclic Plasticity of Current Collector
,”
J. Power Sources
,
263
, pp.
22
28
. 10.1016/j.jpowsour.2014.04.007
25.
Hao
,
F.
, and
Fang
,
D. N.
,
2013
, “
Reducing Diffusion-Induced Stresses of Electrode-Collector Bilayer in Lithium-Ion Battery by Pre-strain
,”
J. Power Sources
,
242
, pp.
415
420
. 10.1016/j.jpowsour.2013.05.098
26.
Zhang
,
X.
,
Hao
,
F.
,
Chen
,
H. S.
, and
Fang
,
D. N.
,
2015
, “
Diffusion-Induced Stress and Delamination of Layered Electrode Plates With Composition-Gradient
,”
Mech. Mater.
,
91
(
S1
), pp.
351
362
. 10.1016/j.mechmat.2015.04.016
27.
Li
,
D.
,
Li
,
Z.
,
Song
,
Y.
, and
Zhang
,
J.
,
2016
, “
Analysis of Diffusion Induced Elastoplastic Bending of Bilayer Lithium-Ion Battery Electrodes
,”
Appl. Math. Mech. Engl. Ed.
,
37
(
5
), pp.
659
670
. 10.1007/s10483-016-2079-8
28.
Christensen
,
J.
, and
Newman
,
J.
,
2006
, “
A Mathematical Model of Stress Generation and Fracture in Lithium Manganese Oxide
,”
J. Electrochem. Soc.
,
153
(
6
), pp.
A1019
A1030
. 10.1149/1.2185287
29.
Yang
,
F. Q.
,
2012
, “
Diffusion-Induced Stress in Inhomogeneous Materials: Concentration-Dependent Elastic Modulus
,”
Sci. China Phys. Mech.
,
55
(
6
), pp.
955
962
. 10.1007/s11433-012-4687-8
30.
Yang
,
F. Q.
, and
Li
,
J. C. M.
,
2003
, “
Diffusion-Induced Beam Bending in Hydrogen Sensors
,”
J. Appl. Phys.
,
93
(
11
), pp.
9304
9309
. 10.1063/1.1569980
31.
Li
,
J. C. M.
,
1978
, “
Physical Chemistry of Some Microstructural Phenomena
,”
Metall. Mater. Trans. A
,
9
(
10
), pp.
1353
1380
. 10.1007/BF02661808
32.
Hao
,
W. Q.
,
Xie
,
J. M.
, and
Wang
,
F. H.
,
2018
, “
Theoretical Prediction for Large Deflection With Local Indentation of Sandwich Beam Under Quasi-static Lateral Loading
,”
Compos. Struct.
,
192
, pp.
206
216
. 10.1016/j.compstruct.2018.02.097
33.
Hao
,
W. Q.
,
Xie
,
J. M.
,
Wang
,
F. H.
,
Liu
,
Z. F.
, and
Wang
,
Z. H.
,
2017
, “
Analytical Model of Thin-Walled Corrugated Tubes With Sinusoidal Patterns Under Axial Impacting
,”
Int. J. Mech. Sci.
,
128-129
, pp.
1
16
. 10.1016/j.ijmecsci.2017.03.033
34.
Hao
,
W. Q.
,
Xie
,
J. M.
, and
Wang
,
F. H.
,
2017
, “
Theoretical Prediction of the Progressive Buckling and Energy Absorption of the Sinusoidal Corrugated Tube Subjected to Axial Crushing
,”
Comput. Struct.
,
191
, pp.
12
21
. 10.1016/j.compstruc.2017.05.001
35.
Haftbaradaran
,
H.
,
Song
,
J.
,
Curtin
,
W. A.
, and
Gao
,
H. J.
,
2011
, “
Continuum and Atomistic Models of Strongly Coupled Diffusion, Stress, and Solute Concentration
,”
J. Power Sources
,
196
(
1
), pp.
361
370
. 10.1016/j.jpowsour.2010.06.080
36.
Song
,
Y. C.
,
Shao
,
X. J.
,
Guo
,
Z. S.
, and
Zhang
,
J. Q.
,
2013
, “
Role of Material Properties and Mechanical Constraint on Stress-Assisted Diffusion in Plate Electrodes of Lithium Ion Batteries
,”
J. Phys. D Appl. Phys.
,
46
(
10
), p.
105307
. 10.1088/0022-3727/46/10/105307
37.
Yang
,
B.
,
He
,
Y. P.
,
Irsa
,
J.
,
Lundgren
,
C. A.
,
Ratchford
,
J. B.
, and
Zhao
,
Y. P.
,
2012
, “
Effects of Composition-Dependent Modulus, Finite Concentration and Boundary Constraint on Li-Ion Diffusion and Stresses in a Bilayer Cu-Coated Si Nano-Anode
,”
J. Power Sources
,
204
, pp.
168
176
. 10.1016/j.jpowsour.2012.01.029
38.
Deshpande
,
R.
,
Qi
,
Y.
, and
Cheng
,
Y. T.
,
2010
, “
Effects of Concentration-Dependent Elastic Modulus on Diffusion-Induced Stresses for Battery Applications
,”
J. Electrochem. Soc.
,
157
(
8
), pp.
A967
A971
. 10.1149/1.3454762
39.
Larché
,
F.
, and
Cahn
,
J. W.
,
1985
, “
Overview No. 41: The Interactions of Composition and Stress in Crystalline Solids
,”
Acta Metall.
,
33
(
3
), pp.
331
357
. 10.1016/0001-6160(85)90077-X
40.
Wang
,
W. L.
,
Lee
,
S.
, and
Chen
,
J. R.
,
2002
, “
Effect of Chemical Stress on Diffusion in a Hollow Cylinder
,”
J. Appl. Phys.
,
91
(
12
), pp.
9584
9590
. 10.1063/1.1477624
41.
Zhang
,
X.
,
Wei
,
S.
, and
Sastry
,
A. M.
,
2007
, “
Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles
,”
J. Electrochem. Soc.
,
154
(
10
), pp.
A910
A916
. 10.1149/1.2759840
42.
Swaminathan
,
N.
,
Balakrishnan
,
S.
, and
George
,
K.
,
2016
, “
Elasticity and Size Effects on the Electrochemical Response of a Graphite, Li-Ion Battery Electrode Particle
,”
J. Electrochem. Soc.
,
163
(
3
), pp.
A488
A498
. 10.1149/2.0631603jes
43.
Song
,
X.
,
Lu
,
Y. J.
,
Wang
,
F. H.
,
Zhao
,
X.
, and
Chen
,
H. S.
,
2020
, “
A Coupled Electro-chemo-mechanical Model for All-Solid-State Thin Film Li-Ion Batteries: The Effects of Bending on Battery Performances
,”
J. Power Sources
,
452
, p.
227803
. 10.1016/j.jpowsour.2020.227803
44.
Zhao
,
K.
,
Pharr
,
M.
,
Cai
,
S.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2011
, “
Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge
,”
J. Am. Ceram. Soc.
,
94
(
s1
), pp.
s226
s235
. 10.1111/j.1551-2916.2011.04432.x
You do not currently have access to this content.