Abstract

Fire extinguishing technology has become an important component for addressing battery safety issues. To accelerate the research of fire extinguishing technology for typical power batteries used in electric vehicles and electric aircraft, in this paper, an aqueous vermiculite dispersion (AVD) fire extinguishing agent is used to suppress the thermal runaway (TR) of batteries in various material systems. Two characteristic physical parameters, namely, temperature and flue gas composition, are analyzed and compared in two scenarios (with and without the fire extinguishing agent). Two typical clean fire extinguishing agents (Novec 1230 and 2-BTP) are also applied in the fire extinguishing experiment. The cooling effect of these two extinguishing agents is compared, demonstrating the advantages of the AVD extinguishing agent in terms of extinguishing and cooling.

References

1.
Wang
,
Q. S.
,
Ping
,
P.
,
Zhao
,
X. J.
,
Chu
,
G. Q.
,
Sun
,
J. H.
, and
Chen
,
C. H.
,
2012
, “
Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery
,”
J. Power Sources
,
208
, pp.
210
224
. 10.1016/j.jpowsour.2012.02.038
2.
Si
,
R. J.
,
Liu
,
D. Q.
, and
Xue
,
S. Q.
,
2018
, “
Experimental Study on Fire and Explosion Suppression of Self-Ignition of Lithium Ion Battery
,”
Procedia Eng.
,
211
, pp.
629
634
. 10.1016/j.proeng.2017.12.057
3.
Federal Aviation Administration
,
2020
,
Events With Smoke, Fire, Extreme Heat or Explosion Involving Lithium Batteries
,
FAA Office of Security and Hazardous Materials Safety
,
Washington
.
4.
Li
,
K.
,
Yan
,
J. J.
,
Chen
,
H. D.
, and
Wang
,
Q. S.
,
2018
, “
Water Cooling Based Strategy for Lithium Ion Battery Pack Dynamic Cycling for Thermal Management System
,”
Appl. Therm. Eng.
,
132
, pp.
575
585
. 10.1016/j.applthermaleng.2017.12.131
5.
Fernandes
,
Y.
,
Bry
,
A.
, and
De Persis
,
S.
,
2018
, “
Identification and Quantification of Gases Emitted During Abuse Tests by Overcharge of a Commercial Li-Ion Battery
,”
J. Power Sources
,
389
, pp.
106
119
. 10.1016/j.jpowsour.2018.03.034
6.
Wang
,
J. H.
,
Yamada
,
Y. K.
,
Sodeyama
,
K.
,
Watanabe
,
E.
,
Takada
,
K.
,
Tateyama
,
Y.
, and
Yamada
,
A.
,
2018
, “
Fire-extinguishing Organic Electrolytes for Safe Batteries
,”
Nature Energy
,
3
(
1
), pp.
22
29
. 10.1038/s41560-017-0033-8
7.
Wang
,
Q. S.
,
Shao
,
G. Z.
,
Duan
,
Q. L.
,
Man
,
C.
,
Li
,
Y. Q.
,
Wu
,
K.
,
Liu
,
B. J.
,
Peng
,
P.
, and
Sun
,
J. H.
,
2015
, “
The Efficiency of Heptafluoropropane Fire Extinguishing Agent on Suppressing the Lithium Titanate Battery Fire
,”
Fire Technol.
,
52
(
2
), pp.
387
396
. 10.1007/s10694-015-0531-9
8.
Luo
,
W. T.
,
Zhu
,
S. B.
,
Gong
,
J. H.
, and
Zhou
,
Z.
,
2018
, “
Research and Development of Fire Extinguishing Technology for Power Lithium Batteries
,”
Procedia Eng.
,
211
, pp.
531
537
. 10.1016/j.proeng.2017.12.045
9.
Liu
,
Y. J.
,
Duan
,
Q. L.
,
Xu
,
J. J.
,
Chen
,
H. D.
,
Lu
,
W.
, and
Wang
,
Q. S.
,
2018
, “
Experimental Study on the Efficiency of Dodecafluoro-2-Methylpentan-3-One on Suppressing Lithium-Ion Battery Fires
,”
RSC Adv.
,
8
(
73
), pp.
42223
42232
. 10.1039/C8RA08908F
10.
Liu
,
Y. J.
,
Duan
,
Q. L.
,
Xu
,
J. J.
,
Li
,
H.
,
Sun
,
J. H.
, and
Wang
,
Q. S.
,
2020
, “
Experimental Study on a Novel Safety Strategy of Lithium-Ion Battery Integrating Fire Suppression and Rapid Cooling
,”
J. Energy Storage
,
28
, p.
101185
. 10.1016/j.est.2019.101185
11.
Li
,
K.
,
Wang
,
Q. S.
, and
Sun
,
J. H.
,
2018
, “
Development of Fire Suppression Technology for Lithium-Ion Batteries Based on Fire Detection Pipe
,”
Fire Saf. Sci.
,
27
(
2
), pp.
124
131
. 10.3969/j.issn.1004-5309.2018.02.08
12.
Wang
,
Q. S.
,
Mao
,
B. B.
,
Stoliarov
,
S. I.
, and
Sun
,
J. H.
,
2019
, “
A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies
,”
Prog. Energy Combust. Sci.
,
73
, pp.
95
131
. 10.1016/j.pecs.2019.03.002
13.
Larsson
,
F.
,
Bertilsson
,
S.
,
Furlani
,
F.
,
Albinsson
,
I.
, and
Mellander
,
B.-E.
,
2017
, “
Toxic Fluoride Gas Emissions From Lithium-Ion Battery Fires
,”
Sci. Rep.
,
7
(
1
), p.
10018
. 10.1038/s41598-017-09784-z
14.
Linteris
,
G. T.
,
Babushok
,
V. I.
,
Pagliaro
,
J. L.
,
Burgess
,
D. R.
,Jr
,
Manion
,
J. A.
,
Takahashi
,
F.
,
Katta
,
V. R.
, and
Baker
,
B. T.
,
2016
, “
Understanding Overpressure in the FAA Aerosol Can Test by C3H2F3Br (2-BTP)
,”
Combust. Flame
,
167
, pp.
452
462
. 10.1016/j.combustflame.2015.10.022
15.
Diaz
,
F.
,
Wang
,
F.
,
Weyhe
,
R.
, and
Friedrich
,
B.
,
2019
, “
Gas Generation Measurement and Evaluation During Mechanical Processing and Thermal Treatment of Spent Li-Ion Batteries
,”
Waste Manage.
,
84
, pp.
102
111
. 10.1016/j.wasman.2018.11.029
16.
Koch
,
S.
,
Fill
,
A.
, and
Birke
,
K. P.
,
2018
, “
Comprehensive Gas Analysis on Large Scale Automotive Lithium-Ion Cells in Thermal Runaway
,”
J. Power Sources
,
398
, pp.
106
112
. 10.1016/j.jpowsour.2018.07.051
You do not currently have access to this content.