Abstract

Monodispersed Pt nanoparticles supported on a TiO2 and nitrogen-doped carbon composite (TiO2/NDC) were successfully synthesized via an efficient in situ self-assembly strategy and microwave-assisted polyol process. The Pt/TiO2/NDC catalyst exhibited superior electrocatalytic activity toward the methanol oxidation reaction (MOR). The electrochemically active surface area of the Pt/TiO2/NDC catalyst was twofold higher than that of the Pt/C/NDC catalyst. In addition, the Pt/TiO2/NDC catalyst revealed a better electrocatalytic activity and CO-tolerance as well as a stability toward the MOR. The combined characterization from Fourier transform infrared spectrum, Brunauer-Emmett-Teller surface area, scanning electron microscopy, transmission electron microscopy, energy dispersive spectrometer, thermogravimetric analysis, inductively coupled plasma atomic emissions spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy analyses demonstrated that the superior catalytic performance and stability of the Pt/TiO2/NDC catalysts likely arose from the synergistic effect of their unique morphology and composition as well as the electronic effect between the TiO2/NDC and Pt. This electrocatalyst holds great promise for application in direct methanol fuel cells.

References

1.
Li
,
Y.
,
Liang
,
L.
,
Liu
,
C.
,
Li
,
Y.
,
Xing
,
W.
, and
Sun
,
J.
,
2018
, “
Self-Healing Proton-Exchange Membranes Composed of Nafion–Poly(Vinyl Alcohol) Complexes for Durable Direct Methanol Fuel Cells
,”
Adv. Mater.
,
30
(
25
), p.
1707146
. 10.1002/adma.201707146
2.
Yang
,
Z.
,
Li
,
M.
,
Cui
,
P.
,
Zhang
,
G.
,
Jiang
,
X.
, and
Wang
,
Y.
,
2018
, “
Designed Formation of Hollow Pt Nanocrystals Supported on MoOx-Modified Carbon for High-Performance Methanol Electro-Oxidation
,”
ACS Sustainable Chem. Eng.
,
6
(
11
), pp.
14026
14032
. 10.1021/acssuschemeng.8b02567
3.
Antolini
,
E.
,
2018
, “
Photo-Assisted Methanol Oxidation on Pt-TiO2 Catalysts for Direct Methanol Fuel Cells: A Short Review
,”
Appl. Catal., B
,
237
, pp.
491
503
. 10.1016/j.apcatb.2018.06.029
4.
Lei
,
H.
,
Li
,
X.
,
Sun
,
C.
,
Zeng
,
J.
,
Siwal
,
S. S.
, and
Zhang
,
Q.
, “
Galvanic Replacement–Mediated Synthesis of Ni-Supported Pd Nanoparticles With Strong Metal–Support Interaction for Methanol Electro-Oxidation
,”
Small
, p.
1804722
. 10.1002/smll.201804722
5.
Kakade
,
B. A.
,
Tamaki
,
T.
,
Ohashi
,
H.
, and
Yamaguchi
,
T.
,
2012
, “
Highly Active Bimetallic PdPt and CoPt Nanocrystals for Methanol Electro-Oxidation
,”
J. Phys. Chem. C
,
116
(
13
), pp.
7464
7470
. 10.1021/jp300140s
6.
Huang
,
L.
,
Wang
,
Z.
,
Gong
,
W.
, and
Shen
,
P. K.
,
2018
, “
Atomic Platinum Skin Under Synergy of Cobalt for Enhanced Methanol Oxidation Electrocatalysis
,”
ACS Appl. Mater. Interfaces
,
10
(
50
), pp.
43716
43722
. 10.1021/acsami.8b17070
7.
Narayanamoorthy
,
B.
,
Datta
,
K. K. R.
,
Eswaramoorthy
,
M.
, and
Balaji
,
S.
,
2014
, “
Highly Active and Stable Pt3Rh Nanoclusters as Supportless Electrocatalyst for Methanol Oxidation in Direct Methanol Fuel Cells
,”
ACS Catal.
,
4
(
10
), pp.
3621
3629
. 10.1021/cs500628m
8.
Kwon
,
S.
,
Ham
,
D. J.
,
Kim
,
T.
,
Kwon
,
Y.
,
Lee
,
S. G.
, and
Cho
,
M.
,
2018
, “
Active Methanol Oxidation Reaction by Enhanced CO Tolerance on Bimetallic Pt/Ir Electrocatalysts Using Electronic and Bifunctional Effects
,”
ACS Appl. Mater. Interfaces
,
10
(
46
), pp.
39581
39589
. 10.1021/acsami.8b09053
9.
Luo
,
F.
,
Zhang
,
Q.
,
Qu
,
K.
,
Guo
,
L.
,
Hu
,
H.
,
Yang
,
Z.
,
Cai
,
W.
, and
Cheng
,
H.
,
2019
, “
Decorated PtRu Electrocatalyst for Concentrated Direct Methanol Fuel Cells
,”
ChemCatChem
,
11
(
4
), pp.
1238
1243
. 10.1002/cctc.201801801
10.
Wang
,
K.
,
Sriphathoorat
,
R.
,
Luo
,
S.
,
Tang
,
M.
,
Du
,
H.
, and
Shen
,
P. K.
,
2016
, “
Ultrathin PtCu Hexapod Nanocrystals With Enhanced Catalytic Performance for Electro-Oxidation Reactions
,”
J. Mater. Chem. A.
,
4
(
35
), pp.
13425
13430
. 10.1039/C6TA05230D
11.
Liu
,
J.
,
Xu
,
G.
,
Liu
,
B.
, and
Zhang
,
J.
,
2017
, “
A Dendritic Core-Shell Cu@PtCu Alloy Electrocatalyst Resulting in an Enhanced Electron Transfer Ability and Boosted Surface Active Sites for an Improved Methanol Oxidation Reaction
,”
Chem. Commun.
,
53
(
54
), pp.
7457
7460
. 10.1039/C7CC01559C
12.
Li
,
X.
,
Zhou
,
Y.
,
Du
,
Y.
,
Xu
,
J.
,
Wang
,
W.
,
Chen
,
Z.
, and
Cao
,
J.
,
2019
, “
PtCu Nanoframes as Ultra-High Performance Electrocatalysts for Methanol Oxidation
,”
Int. J. Hydrogen Energy.
,
44
(
33
), pp.
18050
18057
. 10.1016/j.ijhydene.2019.05.072
13.
Kwon
,
T.
,
Jun
,
M.
,
Kim
,
H. Y.
,
Oh
,
A.
,
Park
,
J.
,
Baik
,
H.
,
Joo
,
S. H.
, and
Lee
,
K.
,
2018
, “
Vertex-Reinforced PtCuCo Ternary Nanoframes as Efficient and Stable Electrocatalysts for the Oxygen Reduction Reaction and the Methanol Oxidation Reaction
,”
Adv. Funct. Mater.
,
28
(
13
), p.
1706440
. 10.1002/adfm.201706440
14.
Han
,
S.-H.
,
Liu
,
H.-M.
,
Chen
,
P.
,
Jiang
,
J.-X.
, and
Chen
,
Y.
,
2018
, “
Porous Trimetallic PtRhCu Cubic Nanoboxes for Ethanol Electrooxidation
,”
Adv. Energy Mater.
,
8
(
24
), p.
1801326
. 10.1002/aenm.201801326
15.
Gan
,
L.
,
Cui
,
C.
,
Heggen
,
M.
,
Dionigi
,
F.
,
Rudi
,
S.
, and
Strasser
,
P.
,
2014
, “
Element-specific Anisotropic Growth of Shaped Platinum Alloy Nanocrystals
,”
Science
,
346
(
6216
), pp.
1502
1506
. 10.1126/science.1261212
16.
Sanetuntikul
,
J.
,
Ketpang
,
K.
, and
Shanmugam
,
S.
,
2015
, “
Hierarchical Nanostructured Pt8Ti-TiO2/C as an Efficient and Durable Anode Catalyst for Direct Methanol Fuel Cells
,”
ACS Catal.
,
5
(
12
), pp.
7321
7327
. 10.1021/acscatal.5b01390
17.
Xu
,
H.
,
Wang
,
A.-L.
,
Tong
,
Y.-X.
, and
Li
,
G.-R.
,
2016
, “
Enhanced Catalytic Activity and Stability of Pt/CeO2/PANI Hybrid Hollow Nanorod Arrays for Methanol Electro-Oxidation
,”
ACS Catal.
,
6
(
8
), pp.
5198
5206
. 10.1021/acscatal.6b01010
18.
Zhou
,
Y.
,
Hu
,
X.-C.
,
Liu
,
X.-H.
, and
Wen
,
H.-R.
,
2015
, “
Core–Shell Hierarchical WO2/WO3 Microspheres as an Electrocatalyst Support for Methanol Electrooxidation
,”
Chem. Commun.
,
51
(
83
), pp.
15297
15299
. 10.1039/C5CC06603D
19.
Zhou
,
Q.
,
Pan
,
Z.
,
Wu
,
D.
,
Hu
,
G.
,
Wu
,
S.
,
Chen
,
C.
,
Lin
,
L.
, and
Lin
,
Y.
,
2019
, “
Pt-CeO2/TiN NTs Derived From Metal Organic Frameworks as High-Performance Electrocatalyst for Methanol Electrooxidation
,”
Int. J. Hydrogen Energy
,
44
(
21
), pp.
10646
10652
. 10.1016/j.ijhydene.2019.01.231
20.
Han
,
J.
,
Yang
,
L.
,
Yang
,
L.
,
Jiang
,
W.
,
Luo
,
X.
, and
Luo
,
S.
,
2018
, “
PtRu Nanoalloys Loaded on Graphene and TiO2 Nanotubes co-Modified Ti Wire as an Active and Stable Methanol Oxidation Electrocatalyst
,”
Int. J. Hydrogen Energy
,
43
(
15
), pp.
7338
7346
. 10.1016/j.ijhydene.2018.02.176
21.
Wang
,
Y.
,
Wang
,
J.
,
Han
,
G.
,
Du
,
C.
,
Sun
,
Y.
,
Du
,
L.
,
An
,
M.
,
Yin
,
G.
,
Gao
,
Y.
, and
Song
,
Y.
,
2019
, “
Superior Catalytic Performance and CO Tolerance of Ru@Pt/C-TiO2 Electrocatalyst Toward Methanol Oxidation Reaction
,”
Appl. Surf. Sci.
,
473
, pp.
943
950
. 10.1016/j.apsusc.2018.12.211
22.
Yoon
,
S.
,
Oh
,
K.
,
Liu
,
F.
,
Seo
,
J. H.
,
Somorjai
,
G. A.
,
Lee
,
J. H.
, and
An
,
K.
,
2018
, “
Specific Metal–Support Interactions Between Nanoparticle Layers for Catalysts With Enhanced Methanol Oxidation Activity
,”
ACS Catal.
,
8
(
6
), pp.
5391
5398
. 10.1021/acscatal.8b00276
23.
Sui
,
X.-L.
,
Wang
,
Z.-B.
,
Yang
,
M.
,
Huo
,
L.
,
Gu
,
D.-M.
, and
Yin
,
G.-P.
,
2014
, “
Investigation on C–TiO2 Nanotubes Composite as Pt Catalyst Support for Methanol Electrooxidation
,”
J. Power Sources
,
255
, pp.
43
51
. 10.1016/j.jpowsour.2014.01.001
24.
Zhu
,
J.
,
Zhao
,
X.
,
Xiao
,
M.
,
Liang
,
L.
,
Liu
,
C.
,
Liao
,
J.
, and
Xing
,
W.
,
2014
, “
The Construction of Nitrogen-Doped Graphitized Carbon–TiO2 Composite to Improve the Electrocatalyst for Methanol Oxidation
,”
Carbon
,
72
, pp.
114
124
. 10.1016/j.carbon.2014.01.062
25.
Chu
,
Y. Y.
,
Cao
,
J.
,
Dai
,
Z.
, and
Tan
,
X. Y.
,
2014
, “
A Novel Pt/CeO2 Catalyst Coated with Nitrogen-Doped Carbon With Excellent Performance for DMFCs
,”
J. Mater. Chem. A
,
2
(
11
), p.
4038
. 10.1039/c3ta14418f
26.
Zhang
,
J.
,
Liu
,
X.
,
Xing
,
A.
, and
Liu
,
J.
,
2018
, “
Template-Oriented Synthesis of Nitrogen-Enriched Porous Carbon Nanowhisker by Hollow TiO2 Spheres Nanothorns for Methanol Electrooxidation
,”
ACS Appl. Energy Mater.
,
1
(
6
), pp.
2758
2768
. 10.1021/acsaem.8b00420
27.
Zhu
,
J.
,
Xiao
,
M.
,
Zhao
,
X.
,
Liu
,
C.
, and
Xing
,
W.
,
2015
, “
Titanium Dioxide Encapsulated in Nitrogen-Doped Carbon Enhances the Activity and Durability of Platinum Catalyst for Methanol Electro-Oxidation Reaction
,”
J. Power Sources
,
292
, pp.
78
86
. 10.1016/j.jpowsour.2015.05.041
28.
Ting
,
C.-C.
,
Liu
,
C.-H.
,
Tai
,
C.-Y.
,
Hsu
,
S.-C.
,
Chao
,
C.-S.
, and
Pan
,
F.-M.
,
2015
, “
The Size Effect of Titania-Supported Pt Nanoparticles on the Electrocatalytic Activity Towards Methanol Oxidation Reaction Primarily via the Bifunctional Mechanism
,”
J. Power Sources
,
280
, pp.
166
172
. 10.1016/j.jpowsour.2015.01.081
29.
Yang
,
F.
,
Ma
,
L.
,
Gan
,
M.
,
Zhang
,
J.
,
Yan
,
J.
,
Huang
,
H.
,
Yu
,
L.
,
Li
,
Y.
,
Ge
,
C.
, and
Hu
,
H.
,
2015
, “
Polyaniline-Functionalized TiO2–C Supported Pt Catalyst for Methanol Electro-Oxidation
,”
Synth. Met.
,
205
, pp.
23
31
. 10.1016/j.synthmet.2015.03.017
30.
Mentus
,
S.
,
Ciric-Marjanovic
,
G.
,
Trchova
,
M.
, and
Stejskal
,
J.
,
2009
, “
Conducting Carbonized Polyaniline Nanotubes
,”
Nanotechnology
,
20
(
24
), p.
245601
. 10.1088/0957-4484/20/24/245601
31.
Zhang
,
J.
,
Zhang
,
X.
,
Zhou
,
Y.
,
Guo
,
S.
,
Wang
,
K.
,
Liang
,
Z.
, and
Xu
,
Q.
,
2014
, “
Nitrogen-Doped Hierarchical Porous Carbon Nanowhisker Ensembles on Carbon Nanofiber for High-Performance Supercapacitors
,”
ACS Sustainable Chem. Eng.
,
2
(
6
), pp.
1525
1533
. 10.1021/sc500221s
32.
Aijaz
,
A.
,
Masa
,
J.
,
Rosler
,
C.
,
Xia
,
W.
,
Weide
,
P.
,
Botz
,
A. J.
,
Fischer
,
R. A.
,
Schuhmann
,
W.
, and
Muhler
,
M.
,
2016
, “
Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode
,”
Angew. Chem. Int. Ed. Engl.
,
55
(
12
), pp.
4087
4091
. 10.1002/anie.201509382
33.
Daşdelen
,
Z.
,
Yıldız
,
Y.
,
Eriş
,
S.
, and
Şen
,
F.
,
2017
, “
Enhanced Electrocatalytic Activity and Durability of Pt Nanoparticles Decorated on GO-PVP Hybride Material for Methanol Oxidation Reaction
,”
Appl. Catal., B
,
219
, pp.
511
516
. 10.1016/j.apcatb.2017.08.014
34.
Liu
,
C.-S.
,
Liu
,
X.-C.
,
Wang
,
G.-C.
,
Liang
,
R.-P.
, and
Qiu
,
J.-D.
,
2014
, “
Preparation of Nitrogen-Doped Graphene Supporting Pt Nanoparticles as a Catalyst for Oxygen Reduction and Methanol Oxidation
,”
J. Electroanal. Chem.
,
728
, pp.
41
50
. 10.1016/j.jelechem.2014.06.024
35.
Huang
,
H.
,
Ye
,
G.
,
Yang
,
S.
,
Fei
,
H.
,
Tiwary
,
C. S.
,
Gong
,
Y.
,
Vajtai
,
R.
,
Tour
,
J. M.
,
Wang
,
X.
, and
Ajayan
,
P. M.
,
2015
, “
Nanosized Pt Anchored onto 3D Nitrogen-Doped Graphene Nanoribbons Towards Efficient Methanol Electrooxidation
,”
J. Mater. Chem. A
,
3
(
39
), pp.
19696
19701
. 10.1039/C5TA05372B
36.
Zhang
,
J.
,
Ma
,
L.
,
Gan
,
M.
,
Fu
,
S.
, and
Zhao
,
Y.
,
2016
, “
TiN@Nitrogen-Doped Carbon Supported Pt Nanoparticles as High-Performance Anode Catalyst for Methanol Electrooxidation
,”
J. Power Sources
,
324
, pp.
199
207
. 10.1016/j.jpowsour.2016.05.083
37.
Zhang
,
L.
,
Gao
,
A.
,
Liu
,
Y.
,
Wang
,
Y.
, and
Ma
,
J.
,
2014
, “
PtRu Nanoparticles Dispersed on Nitrogen-Doped Carbon Nanohorns as an Efficient Electrocatalyst for Methanol Oxidation Reaction
,”
Electrochim. Acta
,
132
, pp.
416
422
. 10.1016/j.electacta.2014.03.180
38.
Silva
,
R.
,
Voiry
,
D.
,
Chhowalla
,
M.
, and
Asefa
,
T.
,
2013
, “
Efficient Metal-Free Electrocatalysts for Oxygen Reduction: Polyaniline-Derived N- and O-Doped Mesoporous Carbons
,”
J. Am. Chem. Soc.
,
135
(
21
), pp.
7823
7826
. 10.1021/ja402450a
39.
Jiang
,
Z.-Z.
,
Wang
,
Z.-B.
,
Chu
,
Y.-Y.
,
Gu
,
D.-M.
, and
Yin
,
G.-P.
,
2011
, “
Carbon Riveted Microcapsule Pt/MWCNTs-TiO2 Catalyst Prepared by In Situ Carbonized Glucose With Ultrahigh Stability for Proton Exchange Membrane Fuel Cell
,”
Energy Environ. Sci.
,
4
(
7
), p.
2558
. 10.1039/c1ee01091c
40.
Zhu
,
T.
,
Zhou
,
J.
,
Li
,
Z.
,
Li
,
S.
,
Si
,
W.
, and
Zhuo
,
S.
,
2014
, “
Hierarchical Porous and N-Doped Carbon Nanotubes Derived From Polyaniline for Electrode Materials in Supercapacitors
,”
J. Mater. Chem. A
,
2
(
31
), p.
12545
. 10.1039/C4TA01465K
41.
Peng
,
X.
,
Chen
,
D.
,
Yang
,
X.
,
Wang
,
D.
,
Li
,
M.
,
Tseng
,
C. C.
,
Panneerselvam
,
R.
,
Wang
,
X.
,
Hu
,
W.
,
Tian
,
J.
, and
Zhao
,
Y.
,
2016
, “
Microwave-Assisted Synthesis of Highly Dispersed PtCu Nanoparticles on Three-Dimensional Nitrogen-Doped Graphene Networks With Remarkably Enhanced Methanol Electrooxidation
,”
ACS Appl. Mater. Interfaces
,
8
(
49
), pp.
33673
33680
. 10.1021/acsami.6b11800
42.
Bhuvanendran
,
N.
,
Ravichandran
,
S.
,
Zhang
,
W.
,
Ma
,
Q.
,
Xu
,
Q.
,
Khotseng
,
L.
, and
Su
,
H.
,
2020
, “
Highly Efficient Methanol Oxidation on Durable PtxIr/MWCNT Catalysts for Direct Methanol Fuel Cell Applications
,”
Int. J. Hydrogen Energy
.10.1016/j.ijhydene.2019.12.176
43.
Jin
,
M.
,
Lu
,
S.-Y.
,
Zhong
,
X.
,
Liu
,
H.
,
Liu
,
H.
,
Gan
,
M.
, and
Ma
,
L.
,
2020
, “
Spindle-Like MOF Derived TiO2@NC–NCNTs Composite With Modulating Defect Site and Graphitization Nanoconfined Pt NPs as Superior Bifunctional Fuel Cell Electrocatalysts
,”
ACS Sustainable Chem. Eng
. 10.1021/acssuschemeng.9b06329
44.
Bai
,
G.
,
Liu
,
C.
,
Gao
,
Z.
,
Lu
,
B.
,
Tong
,
X.
,
Guo
,
X.
, and
Yang
,
N.
,
2019
, “
Atomic Carbon Layers Supported Pt Nanoparticles for Minimized CO Poisoning and Maximized Methanol Oxidation
,”
Small
,
15
(
38
), p.
e1902951
. 10.1002/smll.201902951
45.
Long
,
G.-f.
,
Li
,
X.-h.
,
Wan
,
K.
,
Liang
,
Z.-x.
,
Piao
,
J.-h.
, and
Tsiakaras
,
P.
,
2017
, “
Pt/CN-Doped Electrocatalysts: Superior Electrocatalytic Activity for Methanol Oxidation Reaction and Mechanistic Insight into Interfacial Enhancement
,”
Appl. Catal., B
,
203
, pp.
541
548
. 10.1016/j.apcatb.2016.10.055
46.
Sui
,
X.-L.
,
Wang
,
Z.-B.
,
Xia
,
Y.-F.
,
Yang
,
M.
,
Zhao
,
L.
, and
Gu
,
D.-M.
,
2015
, “
A Rapid Synthesis of TiO2 Nanotubes in an Ethylene Glycol System by Anodization as a Pt-Based Catalyst Support for Methanol Electrooxidation
,”
RSC Adv.
,
5
(
45
), pp.
35518
35523
. 10.1039/C5RA04112K
47.
Sui
,
X.-L.
,
Wang
,
Z.-B.
,
Li
,
C.-Z.
,
Zhang
,
J.-J.
,
Zhao
,
L.
,
Gu
,
D.-M.
, and
Gu
,
S.
,
2015
, “
Multiphase Sodium Titanate/Titania Composite Nanostructures as Pt-Based Catalyst Supports for Methanol Oxidation
,”
J. Mater. Chem. A
,
3
(
2
), pp.
840
846
. 10.1039/C4TA05150E
48.
Zhao
,
L.
,
Wang
,
Z.-B.
,
Li
,
J.-L.
,
Zhang
,
J.-J.
,
Sui
,
X.-L.
, and
Zhang
,
L.-M.
,
2015
, “
A Newly-Designed Sandwich-Structured Graphene-Pt-Graphene Catalyst With Improved Electrocatalytic Performance for Fuel Cells
,”
J. Mater. Chem. A
,
3
(
10
), pp.
5313
5320
. 10.1039/C4TA06172A
49.
Chen
,
J.
,
Li
,
S.
,
Du
,
J.
,
Liu
,
J.
,
Yu
,
M.
,
Meng
,
S.
, and
Wang
,
B.
,
2015
, “
Superior Methanol Electrooxidation Activity and CO Tolerance of Mesoporous Helical Nanospindle-Like CeO2 Modified Pt/C
,”
RSC Adv.
,
5
(
79
), pp.
64261
64267
. 10.1039/C5RA09047D
50.
Zhou
,
Y.
,
Hu
,
X.-C.
,
Fan
,
Q.
, and
Wen
,
H.-R.
,
2016
, “
Three-dimensional Crumpled Graphene as an Electro-Catalyst Support for Formic Acid Electro-Oxidation
,”
J. Mater. Chem. A
,
4
(
12
), pp.
4587
4591
. 10.1039/C5TA09956K
51.
Jiang
,
Z.-Z.
,
Wang
,
Z.-B.
,
Chu
,
Y.-Y.
,
Gu
,
D.-M.
, and
Yin
,
G.-P.
,
2011
, “
Ultrahigh Stable Carbon Riveted Pt/TiO2–C Catalyst Prepared by In Situ Carbonized Glucose for Proton Exchange Membrane Fuel Cell
,”
Energy Environ. Sci.
,
4
(
3
), pp.
728
735
. 10.1039/C0EE00475H
52.
Sheng
,
J.
,
Kang
,
J.
,
Ye
,
H.
,
Xie
,
J.
,
Zhao
,
B.
,
Fu
,
X.-Z.
,
Yu
,
Y.
,
Sun
,
R.
, and
Wong
,
C.-P.
,
2018
, “
Porous Octahedral PdCu Nanocages as Highly Efficient Electrocatalysts for the Methanol Oxidation Reaction
,”
J. Mater. Chem. A
,
6
(
9
), pp.
3906
3912
. 10.1039/C7TA07879J
You do not currently have access to this content.