A planar solid oxide fuel cell (SOFC) was fabricated using a commercial Ni/yttria-stabilized zirconia (YSZ) anode support, an YSZ/gadolinium-doped ceria (GDC) thin-film electrolyte, and a composite cathode of La0.6Sr0.4Co0.2Fe0.8O3/Gd0.1Ce0.9O1.95 (LSCF/GDC). A small, three-cell, SOFC stack is assembled using 10 cm × 10 cm single cells, metallic interconnects, and glass-based sealing. The stack performance was examined at various fuel flow rates of H2 + N2 and air at a fixed temperature of 750 °C. The three-cell stack with a crossflow design produced peak power density of 0.216 W/cm2 or about 39 W total power at 750 °C.

References

1.
Noh
,
H. S.
,
Hong
,
J.
,
Kim
,
H.
,
Yoon
,
K. J.
,
Kim
,
B. K.
,
Lee
,
H. W.
,
Lee
,
J. H.
, and
Son
,
J. W.
,
2016
, “
Scale-Up of Thin-Film Deposition-Based Solid Oxide Fuel Cell by Sputtering, a Commercially Viable Thin-Film Technology
,”
J. Electrochem. Soc.
,
163
(7), pp.
F613
F617
.
2.
Cho
,
N. U.
,
Hwang
,
S. C.
,
Han
,
S. M.
, and
Yang
,
C. J.
,
2007
, “
Build and Performance Test of a 3-Cell Solid Oxide Fuel Cell Stack
,”
J. Korean Ceram. Soc.
,
44
(
8
), pp.
407
411
.
3.
Minh
,
N. Q.
,
1993
, “
Ceramic Fuel Cells
,”
J. Am. Ceram. Soc.
,
76
(
3
), pp.
563
588
.
4.
Jung
,
H. Y.
,
Choi
,
S.-H.
,
Kim
,
H.
,
Son
,
J.-W.
,
Kim
,
J.
,
Lee
,
H.-W.
, and
Lee
,
J.-H.
,
2006
, “
Fabrication and Performance Evaluation of 3-Cell SOFC Stack Based on Planar 10 cm × 10 cm Anode-Supported Cells
,”
J. Power Sources
,
159
(
1
), pp.
478
483
.
5.
Sønderby
,
S.
,
Nielsen
,
A. J.
,
Christensen
,
B. H.
,
Almtoft
,
K. P.
,
Lu
,
J.
,
Jensen
,
J.
,
Nielsen
,
L. P.
, and
Eklund
,
P.
,
2012
, “
Reactive Magnetron Sputtering of Uniform Yttria-Stabilized Zirconia Coatings in an Industrial Setup
,”
Surf. Coat. Technol.
,
206
(
19–20
), pp.
4126
4131
.
6.
Sønderby
,
S.
,
Christensen
,
B. H.
,
Almtoft
,
K. P.
,
Nielsen
,
L. P.
, and
Eklund
,
P.
,
2015
, “
Industrial-Scale High Power Impulse Magnetron Sputtering of Yttria-Stabilized Zirconia on Porous NiO/YSZ Fuel Cell Anodes
,”
Surf. Coat. Technol.
,
281
, pp.
150
156
.
7.
Solovyev
,
A. A.
,
Lebedynskiy
,
A. M.
,
Shipilova
,
A. V.
,
Ionov
,
I. V.
,
Smolyanskiy
,
E. A.
,
Lauk
,
A. L.
,
Remnev
,
G. E.
, and
Maslov
,
A. S.
,
2017
, “
Scale-Up of Solid Oxide Fuel Cells With Magnetron Sputtered Electrolyte
,”
Fuel Cells
,
17
(
3
), pp.
378
382
.
8.
Wu
,
W.
,
Wang
,
G. L.
,
Guan
,
W. B.
,
Zhen
,
Y. F.
, and
Wang
,
W. G.
,
2013
, “
Effect of Contact Method Between Interconnects and Electrodes on Area Specific Resistance in Planar Solid Oxide Fuel Cells
,”
Fuel Cells
,
13
(5), pp.
743
750
.
9.
Jin
,
L.
,
Guan
,
W.
,
Niu
,
J.
,
Ma
,
X.
, and
Wang
,
W. G.
,
2013
, “
Effect of Contact Area and Depth Between Cell Cathode and Interconnect on Stack Performance for Planar Solid Oxide Fuel Cells
,”
J. Power Sources
,
240
, pp.
796
805
.
10.
Metzger
,
P.
,
Friedrich
,
K. A.
,
Müller-Steinhagen
,
H.
, and
Schiller
,
G.
,
2006
, “
SOFC Characteristics Along the Flow Path
,”
Solid State Ionics
,
177
(
19–25
), pp.
2045
2051
.
11.
Zhou
,
J.
,
Liu
,
Q.
,
Zhang
,
L.
, and
Chan
,
S. H.
,
2016
, “
A Study of Short Stack With Large Area Solid Oxide Fuel Cells by Aqueous Tape Casting
,”
Int. J. Hydrogen Energy
,
41
(
40
), pp.
18203
18206
.
12.
Khan
,
M. Z.
,
Song
,
R. H.
,
Lee
,
S. B.
,
Lee
,
J. W.
,
Lim
,
T. H.
, and
Park
,
S. J.
,
2014
, “
Effect of GDC Interlayer on the Degradation of Solid Oxide Fuel Cell Cathode During Accelerated Current Load Cycling
,”
Int. J. Hydrogen Energy
,
39
(
35
), pp.
20799
20805
.
You do not currently have access to this content.