A three-dimensional, full-scale, single-phase finite element model has been developed for a liquid-fed direct methanol fuel cell (DMFC) with serpentine flow patterns. Equations for conservation of mass, momentum, and species are coupled with electrochemical kinetics in anode and cathode catalyst layers (CCLs). At the anode and cathode sides, only the liquid and the gas phases are considered, respectively. The significant benefit of a full-scale model is that the effect of physical parameters and distribution of the concentration of species can be realized in different channels for a desired section within the flow patterns. The model is used to study the effects of different operating parameters on fuel cell performance. Comparing numerical and experimental results demonstrate that the single-phase model slightly over-predicts the results for polarization plot. The modeling results also show that the porosity, temperature, and methanol concentration play a key role in affecting the DMFC polarization curve.

References

1.
Argyropoulos
,
P.
,
Scott
,
K.
, and
Taama
,
W.-M.
,
1999
, “
One-Dimensional Thermal Model for Direct Methanol Fuel Cell Stacks—Part I: Model Development
,”
J. Power Sources
,
79
(
2
), pp.
184
198
.
2.
Jeng
,
K.-T.
, and
Chen
,
C.-W.
,
2002
, “
Modeling and Simulation of a Direct Methanol Fuel Cell Anode
,”
J. Power Sources
,
112
(
2
), pp.
367
375
.
3.
Dohle
,
H.
, and
Wippermann
,
K.
,
2004
, “
Experimental Evaluation and Semi-Empirical Modeling of U/I Characteristics and Methanol Permeation of a Direct Methanol Fuel Cell
,”
J. Power Sources
,
135
(
1
), pp.
152
164
.
4.
Zou
,
J.
,
He
,
Y.
,
Miao
,
Z.
, and
Li
,
X.
,
2010
, “
Non-Isothermal Modeling of Direct Methanol Fuel Cell
,”
Int. J. Hydrogen Energy
,
35
(
13
), pp.
7206
7216
.
5.
Chen
,
R.
, and
Zhao
,
T.-S.
,
2005
, “
Mathematical Modeling of a Passive-Feed DMFC With Heat Transfer Effect
,”
J. Power Sources
,
152
, pp.
122
130
.
6.
Kulikovsky
,
A.
,
2005
, “
Model of the Flow With Bubbles in the Anode Channel and Performance of a Direct Methanol Fuel Cell
,”
Electrochem. Commun.
,
7
(
2
), pp.
237
243
.
7.
Sandhu
,
S. S.
,
Crowther
,
R. O.
,
Krishnan
,
S. C.
, and
Fellner
,
J. P.
,
2003
, “
Direct Methanol Polymer Electrolyte Fuel Cell Modeling: Reversible Open-Circuit Voltage and Species Flux Equations
,”
Electrochim. Acta
,
48
(
14
), pp.
2295
2303
.
8.
Mosquera
,
M.
, and
Lizcanovalbuena
,
W.
,
2009
, “
Modeling of the Anode Side of a Direct Methanol Fuel Cell With Analytical Solutions
,”
Electrochim. Acta
,
54
(
4
), pp.
1233
1239
.
9.
Alotto
,
P.
,
Guarnieri
,
M.
, and
Moro
,
F.
,
2009
, “
Optimal Design of Micro Direct Methanol Fuel Cells for Low-Power Applications
,”
IEEE Trans. Magn.
,
45
(
3
), pp.
1570
1573
.
10.
Scott
,
K.
,
Argyropoulos
,
P.
, and
Sundmacher
,
K.
,
1999
, “
A Model for the Liquid Feed Direct Methanol Fuel Cell
,”
J. Electroanal. Chem.
,
477
(
2
), pp.
97
110
.
11.
Baxter
,
S.
,
Battaglia
,
Y.
, and
White
,
R.-S.
,
1999
, “
Methanol Fuel Cell Model: Anode
,”
J. Electrochem. Soc.
,
146
(
2
), pp.
437
447
.
12.
Ge
,
J.-B.
, and
Liu
,
H.
,
2005
, “
Experimental Studies of a Direct Methanol Fuel Cell
,”
J. Power Sources
,
142
(
1
), pp.
56
69
.
13.
Ge
,
J.-B.
, and
Liu
,
H.
,
2007
, “
A Three-Dimensional Two-Phase Flow Model for a Liquid-Fed Direct Methanol Fuel Cell
,”
J. Power Sources
,
163
(
2
), pp.
907
915
.
14.
Liu
,
W.
, and
Wang
,
C.
,
2007
, “
Three-Dimensional Simulations of Liquid Feed Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
,
154
(
3
), pp.
B352
B361
.
15.
Xu
,
C.
,
Zhao
,
T. S.
, and
Yang
,
W. W.
,
2008
, “
Modeling of Water Transport Through the Membrane Electrode Assembly for Direct Methanol Fuel Cells
,”
J. Power Sources
,
178
(
1
), pp.
291
308
.
16.
Atacan
,
O. F.
,
Ouellette
,
D.
, and
Colpan
,
C. O.
,
2016
, “
Two-Dimensional Multiphase Non-Isothermal Modeling of a Flowing Electrolyte E Direct Methanol Fuel Cell
,”
Int. J. Hydrogen Energy
(in press).
17.
Ouellette
,
D.
,
Colpan
,
C. O.
,
Matida
,
E.
,
Cruickshank
,
C. A.
, and
Hamdullahpur
,
F.
,
2015
, “
A Comprehensive 1D Model of a Flowing Electrolyte-Direct Methanol Fuel Cell With Experimental Validation
,”
Int. J. Energy Res.
,
39
(
1
), pp.
33
45
.
18.
Ouellette
,
D.
,
Colpan
,
C. O.
,
Matida
,
E.
, and
Cruickshank
,
C. A.
,
2015
, “
A Single Domain Approach to Modeling the Multiphase Flow Within a Flowing Electrolyte-Direct Methanol Fuel Cell
,”
Int. J. Hydrogen Energy
,
40
(
24
), pp.
7817
7828
.
19.
Ouellette
,
D.
,
Colpan
,
C. O.
,
Cruickshank
,
C. A.
, and
Matida
,
E.
,
2015
, “
Parametric Studies on the Membrane Arrangement and Porous Properties of the Flowing Electrolyte Channel in a Flowing Electrolyte-Direct Methanol Fuel Cell
,”
Int. J. Hydrogen Energy
,
40
(
24
), pp.
7732
7742
.
20.
Miao
,
Z.
,
Xu
,
J.-L.
, and
He
,
Y.-L.
,
2015
, “
Modeling of the Transport Phenomena in Passive Direct Methanol Fuel Cells Using a Two-Phase Anisotropic Model
,”
Adv. Mech. Eng.
,
6
(
1
), pp.
1
15
.
21.
Kamaruddin
,
M. Z. F.
,
Kamarudin
,
S. K.
,
Masdar
,
M. S.
, and
Daud
,
W. R. W.
,
2015
, “
Investigating Design Parameter Effects on the Methanol Flux in the Passive Storage of a Direct Methanol Fuel Cell
,”
Int. J. Hydrogen Energy
,
40
(
35
), pp.
11931
11942
.
22.
Oliveira
,
V. B.
,
Rangel
,
C. M.
, and
Pinto
,
A. M. F. R.
,
2009
, “
Modelling and Experimental Studies on a Direct Methanol Fuel Cell Working Under Low Methanol Crossover and High Methanol Concentrations
,”
Int. J. Hydrogen Energy
,
34
(
15
), pp.
6443
6451
.
23.
Mudiraj
,
S. P.
,
Biswas
,
M.
,
Lear
,
W.
, and
Crisalle
,
O. D.
,
2015
, “
Comprehensive Mass Transport Modeling Technique for the Cathode Side of an Open-Cathode Direct Methanol Fuel Cell
,”
Int. J. Hydrogen Energy
,
40
(
25
), pp.
8137
8159
.
24.
Wang
,
C. Y.
,
2004
, “
Fundamental Models for Fuel Cell Engineering
,”
Chem. Rev.
,
104
(
10
), pp.
4727
4766
.
25.
Liu
,
W.
,
Wan
,
L.
,
Liu
,
J.
,
Zhao
,
M.
, and
Zou
,
Z.
,
2015
, “
Performance Improvement of the Open-Cathode Proton Exchange Membrane Fuel Cell by Optimizing Membrane Electrode Assemblies
,”
Int. J. Hydrogen Energy
,
40
(
22
), pp.
7159
7167
.
26.
Vera
,
M.
,
2007
, “
A Single-Phase Model for Liquid-Feed DMFCs With Non-Tafel Kinetics
,”
J. Power Sources
,
171
(
2
), pp.
763
777
.
27.
Baxter
,
S. F.
,
1999
, “
Mathematical Modeling of a Direct Methanol Fuel Cell
,” Ph.D. dissertation, University of South Carolina, Columbia, SC.
28.
Wenpeng
,
L.
,
2005
, “
Methanol, Water and Heat Transport in Direct Methanol Fuel Cells for Portable Power
,”
Ph.D. dissertation
, The Pennsylvania State University, State College, PA.
29.
Seung
,
H. J.
,
2010
, “
Modeling and Control of Two-Phase Flow in Direct Methanol Fuel Cells
,”
Ph.D. dissertation
, The Pennsylvania State University, State College, PA.
30.
Barbir
,
F.
,
2012
,
PEM Fuel Cells Theory and Practice
,
Elsevier Science
,
San Diego, CA
.
31.
Yin
,
K.
,
2008
, “
A Theoretical Model of the Membrane Electrode Assembly of Liquid Feed Direct Methanol Fuel Cell With Consideration of Water and Methanol Crossover
,”
J. Power Sources
,
179
(
2
), pp.
700
710
.
32.
Wang
,
Z.
, and
Wang
,
C.
,
2003
, “
Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
,
150
(
4
), pp.
A508
A519
.
33.
Yang
,
W.
, and
Zhao
,
T.
,
2009
, “
Numerical Investigations of Effect of Membrane Electrode Assembly Structure on Water Crossover in a Liquid-Feed Direct Methanol Fuel Cell
,”
J. Power Sources
,
188
(
2
), pp.
433
446
.
34.
Scott
,
K.
,
Taama
,
K.
, and
Cruickshank
,
J.
,
1997
, “
Performance and Modelling of a Direct Methanol Solid Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
65
(
1
), pp.
159
171
.
35.
Colpan
,
C.
,
Alan
,
F.
, and
Hamdullahpur
,
F.
,
2012
, “
2D Modeling of a Flowing-Electrolyte Direct Methanol Fuel Cell
,”
J. Power Sources
,
209
, pp.
301
311
.
36.
Sudoh
,
M.
,
Hakamata
,
T.
,
Furukawa
,
K.
, and
Okajima
,
K.
,
2004
, “
Modification Effect of Proton Exchange Membrane on Methanol Permeation and Proton Conductivity for Direct Methanol Fuel Cell
,”
Int. J. Green Energy
,
1
(
2
), pp.
153
165
.
37.
Oosthuizen
,
P.
,
Sun
,
L.
, and
McAuley
,
K.
,
2005
, “
The Effect of Channel-to-Channel Gas Crossover on the Pressure and Temperature Distribution in PEM Fuel Cell Flow Plates
,”
Appl. Therm. Eng.
,
25
(
7
), pp.
1083
1096
.
38.
Shi
,
Zh.
, and
Wang
,
X.
,
2008
, “
A Numerical Study of Flow Crossover Between Adjacent Flow Channels in a Proton Exchange Membrane Fuel Cell With Serpentine Flow Field
,”
J. Power Sources
,
185
(
2
), pp.
985
992
.
39.
Wang
,
Z. H.
,
Wang
,
C.
, and
Chen
,
K.
,
2001
, “
Two-Phase Flow and Transport in the Air Cathode of Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
94
(
1
), pp.
40
50
.
40.
Birgersson
,
E.
,
Nordlund
,
J.
,
Vynnycky
,
M.
,
Picard
,
C.
, and
Lindbergh
,
G.
,
2004
, “
Reduced Two-Phase Model for Analysis of the Anode of a DMFC
,”
J. Electrochem. Soc.
,
151
(
12
), pp.
A2157
A2172
.
41.
Kjeang
,
E.
,
Goldak
,
J.
,
Golriz
,
M. R.
,
Gu
,
J.
,
James
,
D.
, and
Kordesch
,
K.
,
2005
, “
Modeling Methanol Crossover by Diffusion and Electro-Osmosis in a Flowing Electrolyte Direct Methanol Fuel Cell
,”
Fuel Cells
,
5
(
4
), pp.
486
498
.
42.
Kjeang
,
E.
,
Goldak
,
J.
,
Golriz
,
M. R.
,
Gu
,
J.
,
James
,
D.
, and
Kordesch
,
K.
,
2006
, “
A Parametric Study of Methanol Crossover in a Flowing Electrolyte-Direct Methanol Fuel Cell
,”
J. Power Sources
,
153
(
1
), pp.
89
99
.
43.
Jung
,
S.
,
2013
, “
Non-Isothermal Multi-Dimensional Direct Methanol Fuel Cell Model With Micro-Porous Layers Mitigating Water/ Methanol Crossover
,”
J. Power Sources
,
231
, pp.
60
81
.
44.
Liu
,
F.
, and
Wang
,
C.-Y.
,
2007
, “
Mixed Potential in a Direct Methanol Fuel Cell Modeling and Experiments
,”
J. Electrochem. Soc.
,
154
(
6
), pp.
B514
B522
.
45.
Djilali
,
N.
,
2007
, “
Computational Modelling of Polymer Electrolyte Membrane (PEM) Fuel Cells: Challenges and Opportunities
,”
Energy
,
32
(
4
), pp.
269
280
.
46.
Siegel
,
C.
,
2008
, “
Review of Computational Heat and Mass Transfer Modeling in Polymer-Electrolyte-Membrane (PEM) Fuel Cells
,”
Energy
,
33
(
9
), pp.
1331
1352
.
47.
Wang
,
Y.
,
Chen
,
K. S.
,
Mishler
,
J.
,
Cho
,
S. C.
, and
Adroher
,
X. C.
,
2011
, “
A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research
,”
Appl. Energy
,
88
(
4
), pp.
981
1007
.
You do not currently have access to this content.