The objective of this investigation is to study silica-doped/sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) composite membranes for operation in hydrogen/oxygen proton-exchange membrane fuel cells ranging from room temperature (RT) up to 120 °C. The sulfonated PPO composite membranes were prepared using a sol–gel process employing reaction with tetra-ethoxysilane (TEOS) followed by heat treatment at 60, 90, and 120 °C, respectively. The presence of silicon oxide in the composite membranes was evaluated using FTIR spectroscopy, while thermal properties were studied using thermal gravimetric analysis-differential scanning calorimetric (TGA-DSC) measurements. Additionally, ion exchange capacity, water uptake, and proton conductivity characterizations were also carried out. It was observed that water uptake for 75% PPO sulfonated composite membrane treated at 120 °C is higher than that of NafionTM membrane and the proton conductivity value measured at 120  °C is 0.35·10−1 S/cm. Therefore, the composite membranes are potentially suitable for high temperature fuel cell applications.

References

1.
Ramani
,
V.
,
2006
, “
Fuel Cells
,”
Electrochem. Soc. Interface
,
15
(
1
), pp.
41
44
.
2.
Barbir
,
F.
, and
Gomez
,
T.
,
1996
, “
Efficiency and Economic of Proton Exchange Membrane (PEMFC) Fuel Cell
,”
Int. J. Hydrogen Energ.
,
21
(
10
), pp.
891
901
.10.1016/0360-3199(96)00030-4
3.
Schultz
,
T.
,
Zhou
,
S.
, and
Sundmacher
,
K.
,
2001
, “
Current Status of and Recent Developments in the Direct Methanol Fuel Cell
,”
Chem. Eng. Tech.
,
24
(
12
), pp.
1223
1233
.10.1002/1521-4125(200112)24:12<1223::AID-CEAT1223>3.0.CO;2-T
4.
Patterson
,
L. J.
, and
Westerholm
,
R.
,
2001
, “
State of the Art of Multi-Fuel Reformers for Fuel Cell Vehicles: Problem Identification and Research Needs
,”
Int. J. Hydrogen Energ.
,
26
(
3
), pp.
243
264
.10.1016/S0360-3199(00)00073-2
5.
Iulianelli
,
A.
,
Clarizia
,
G.
,
Gugliuzza
,
A.
,
Ebrasu
,
D.
,
Bevilacqua
,
A.
,
Trotta
,
F.
, and
Basile
,
A.
,
2010
, “
Sulfonation of PEEK-WC Polymer Via Chloro-Sulfonic Acid for Potential PEM Fuel Cell Applications
,”
Int. J. Hydrogen Energ.
,
35
(
22
), pp.
12688
12695
.10.1016/j.ijhydene.2010.06.067
6.
Oetjen
,
H. F.
,
Schmidt
,
V. M.
,
Stimming
,
U.
, and
Trila
,
F.
,
1996
, “
Performance Data of a Proton Exchange Membrane Fuel Cell Using H2/CO as Fuel Gas
,”
J. Electrochem. Soc.
,
143
(
12
), pp.
3838
3842
.10.1149/1.1837305
7.
Xiao
,
G.
,
Li
,
Q.
,
Hjuler
,
H. A.
, and
Bjerrum
,
N. J.
,
1995
, “
Hydrogen Oxidation on Gas Diffusion Electrodes for Phosphoric Acid Fuel Cells in the Presence of Carbon Monoxide and Oxygen
,”
J. Electrochem. Soc.
,
142
(
9
), pp.
2890
2893
.10.1149/1.2048660
8.
Alberti
,
G.
,
Casciola
,
G. M.
,
Massinelli
,
L.
, and
Bauer
,
B.
,
2001
, “
Polymeric Proton Conducting Membranes for Medium Temperature Fuel Cells (110–160 °C)
,”
J. Membr. Sci.
,
185
(
1
), pp.
73
81
.10.1016/S0376-7388(00)00635-9
9.
Jones
,
D. J.
, and
Roziere
,
J.
,
2001
, “
Recent Advances in the Functionalization of Polybenzimidazole and Polyetherketone for Fuel Cell Applications
,”
J. Membr. Sci.
,
185
(
1
), pp.
41
58
.10.1016/S0376-7388(00)00633-5
10.
Kobayashi
,
T.
,
Rikukawa
,
M.
,
Sanui
,
K.
, and
Ogata
,
K. N.
,
1998
, “
Proton Conducting Polymers Derived From Poly (Ether-Etherketone) and Poly (4-PhenoxyBenzoyl-1, 4-Phenylene)
,”
Solid State Ionics
,
106
(
3–4
), pp.
219
225
.10.1016/S0167-2738(97)00512-2
11.
Lufrano
,
F.
,
Squadrito
,
G.
,
Patti
,
A.
, and
Passalacqua
,
E.
,
2000
, “
Sulfonated Polysulfone as Promising Membranes for Polymer Electrolyte Fuel Cells
,”
J. Appl. Polym. Sci.
,
77
(
6
), pp.
1250
1257
.10.1002/1097-4628(20000808)77:6<1250::AID-APP9>3.0.CO;2-R
12.
Lufrano
,
F.
,
Gatto
,
I.
,
Staiti
,
P.
,
Antonucci
,
V.
, and
Passalacqua
,
E.
,
2001
, “
Sulfonated Polysulfone Ionomer Membranes for Fuel Cells
,”
Solid State Ionics
,
145
(
1–4
), pp.
47
51
.10.1016/S0167-2738(01)00912-2
13.
Genova-Dimitrova
,
P.
,
Baradie
,
B.
,
Foscallo
,
F.
,
Poinsignon
,
C.
, and
Sanchez
,
J. Y.
,
2001
, “
Membranes for Proton Exchange Membrane Fuel Cell (PEMFC): Sulfonated Polysulfone Associated With Phosphatoantimonic Acid
,”
J. Membrane Sci.
,
185
(
1
), pp.
59
71
.10.1016/S0376-7388(00)00634-7
14.
Staiti
,
P.
,
Lufrano
,
F.
,
Aricò
,
A. S.
,
Passalacqua
,
E.
, and
Antonucci
,
V.
,
2001
, “
Sulfonated Polybenzimidazole Membranes—Physico-Chemical Characterization
,”
J. Membrane Sci.
,
188
(
1
), pp.
71
78
.10.1016/S0376-7388(01)00359-3
15.
Wycisk
,
R.
, and
Pintauro
,
P. N.
,
1996
, “
Sulfonated Polyphosphazene Ion-Exchange Membranes
,”
J. Membrane Sci.
,
119
(
1
), pp.
155
160
.10.1016/0376-7388(96)00146-9
16.
Zhang
,
S.
,
Xu
,
T.
, and
Wu
,
C.
,
2006
, “
Synthesis and Characterizations of Novel, Positively Charged Hybrid Membranes From Poly(2,6-Dimethyl-1,4-Phenylene Oxide)
,”
J. Membrane Sci.
,
269
(
1–2
), pp.
142
151
.10.1016/j.memsci.2005.06.029
17.
Wu
,
Y.
,
Wu
,
C.
,
Xu
,
T.
,
Lin
,
X.
, and
Fu
,
Y.
,
2009
, “
Novel Silica/Poly(2,6-Dimethyl-1,4-Phenylene Oxide) Hybrid Anion-Exchange Membranes for Alkaline Fuel Cells: Effect of Heat Treatment
,”
J. Membrane Sci.
,
338
(
1–2
), pp.
51
60
.10.1016/j.memsci.2009.04.012
18.
Wu
,
Y.
,
Wu
,
C.
,
Varcoe
,
J. R.
,
Poynton
,
S. D.
,
Xu
,
T.
, and
Fu
,
Y.
,
2010
, “
Novel Silica/Poly(2,6-Dimethyl-1,4-Phenylene Oxide) Hybrid Anion-Exchange Membranes for Alkaline Fuel Cells: Effect of Silica Content and the Single Cell Performance
,”
J. Power Sources
,
195
(
10
), pp.
3069
3076
.10.1016/j.jpowsour.2009.11.118
19.
Smith
,
B.
,
Sridhar
,
S.
, and
Khan
,
A. A.
,
2003
, “
Synthesis and Characterization of Proton Conducting Polymer Membranes for Fuel Cells
,”
J. Membrane Sci.
,
225
(
1–2
), pp.
63
76
.10.1016/S0376-7388(03)00343-0
20.
Paturzo
,
L.
,
Basile
,
A.
,
Iulianelli
,
A.
,
Jansen
,
J. C.
,
Gatto
,
I.
, and
Passalacqua
,
E.
,
2005
, “
High Temperature Proton Exchange Membrane Fuel Cell Using a Sulfonated Membrane Obtained Via H2SO4 Treatment of PEEK-WC
,”
Catal. Today
,
104
(
2–4
), pp.
213
218
.10.1016/j.cattod.2005.03.050
21.
Trotta
,
F.
,
Drioli
,
E.
,
Moraglio
,
G.
, and
Baima Poma
,
E.
,
1998
, “
Sulfonation of Polyetheretherketone by Chlorosulfuric Acid
,”
J. Appl. Polym. Sci.
,
70
(
3
), pp.
477
482
.10.1002/(SICI)1097-4628(19981017)70:3<477::AID-APP8>3.0.CO;2-K
22.
Ning
,
Y.-C.
,
2011
,
Interpretation of Organic Spectra
,
John Wiley & Sons
(Asia)
, Singapore, pp.
133
135
.10.1002/9780470825181
23.
Adjemian
,
K. T.
,
Lee
,
S. J.
,
Srinivasan
,
S.
,
Benziger
,
J.
, and
Bocarsly
,
A. B.
,
2002
, “
Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80–140 °C
,”
J. Electrochem. Soc.
,
149
(
3
), pp.
A256–A261
.10.1149/1.1445431
24.
Uchida
,
H.
,
Ueno
,
Y.
,
Hagihara
,
H.
, and
Watanabe
,
M.
,
2003
Self-Humidifying Electrolyte Membranes for Fuel Cells
,”
J. Electrochem. Soc.
,
150
(
1
), pp.
A57
A62
.10.1149/1.1523412
25.
Yang
,
B.
, and
Manthiram
,
A.
,
2004
, “
Hydrous Ta2O5·nH2O Modified Membrane-Electrode Assemblies for PEMFCs
,”
J. Electrochem. Soc.
,
151
(
12
), pp.
A2120
A2125
.10.1149/1.1815155
26.
Yang
,
C.
,
Srinivasan
,
S.
,
Arico
,
A. S.
,
Creti
,
P.
,
Baglio
,
V.
, and
Antonucci
,
V.
,
2001
, “
Composite Nafion/Zirconium Phosphate Membranes for Direct Methanol Fuel Cell Operation at High Temperature
,”
Electrochem. Solid State Lett.
,
4
(
4
), pp.
A31–A34
.10.1149/1.1353157
27.
Nishikawa
,
O.
,
Sugimoto
,
T.
,
Nomura
,
S.
,
Doyama
,
K.
,
Miyatake
,
K.
,
Uchida
,
H.
, and
Watanabe
,
M.
,
2004
, “
Preparation of the Electrode for High Temperature PEFCs Using Novel Polymer Electrolytes Based on Organic/Inorganic Nanohybrids
,”
Electrochim. Acta
,
50
(
2–3
), pp.
667
672
.10.1016/j.electacta.2003.12.069
You do not currently have access to this content.