A three-dimensional, single-phase, multicomponent mathematical model is used for the analysis of a liquid-fed direct methanol fuel cell. Liquid phase is considered on the anode side, and gas phase is considered on the cathode side. The electrochemical kinetics, continuity, momentum, and species transport for methanol, water, and oxygen are all coupled to solve for different optimization scenarios. The effect of methanol crossover due to diffusion and electro-osmotic drag is incorporated into the model. A finite-volume-based computational fluid dynamics (CFD) code is used for the analysis and simulation of the performance of the fuel cell. The analysis model is coupled with the genetic algorithm and sequential quadratic programming optimization technique in seeking the global optimum solution of the fuel cell. Three optimization problems are considered. In the first problem, the maximization of the power density of the fuel cell with lower and upper bounds on the design variables is considered. The second problem considers the maximization of the power density with a constraint on the minimum allowable operating voltage as well as lower and upper bounds on the design variables. In the third problem, the minimization of the cost of the fuel cell is considered with constraints on the minimum allowable operating voltage and the minimum permissible power density as well as lower and upper bounds on the design variables. The performance characteristics of the optimum fuel cell, in the form of graphs of polarization (voltage versus current density), power density versus current density, power density versus voltage, methanol crossover versus current density, and methanol crossover versus voltage are presented and explained to help designers better understand the significance of the optimization results.

References

1.
Grujicic
,
M.
, and
Chittajallu
,
K. M.
,
2003
, “
Design and Optimization of Polymer Electrolyte Membrane (PEM) Fuel Cells
,”
Appl. Surf. Sci.
,
227
, pp.
56
72
.10.1016/j.apsusc.2003.10.035
2.
Mawardi
,
A.
,
Yang
,
F.
, and
Pitchumani
,
R.
,
2005
, “
Optimization of the Operating Parameters of a Proton Exchange Membrane Fuel Cell for Maximum Power Density
,”
ASME J. Fuel Cell Sci. Technol.
,
2
, pp.
121
135
.10.1115/1.1867978
3.
Ou
,
S.
, and
Achenie
,
L. E. K.
,
2005
, “
Artificial Neural Network Modeling of PEM Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
2
, pp.
226
233
.10.1115/1.2039951
4.
Chen
,
K. I.
,
Winnick
,
J.
, and
Manousiouthakis
,
V. I.
,
2006
, “
Global Optimization of a Simple Mathematical Model for a Proton Exchange Membrane Fuel Cell
,”
Comput. Chem. Eng.
,
30
, pp.
1226
1234
.10.1016/j.compchemeng.2006.02.009
5.
Ang.
S. M. C.
,
Brett
,
D. J. L.
, and
Fraga
,
E. S.
,
2010
, “
A Multi-Objective Optimization Model for a General Polymer Electrolyte Membrane Fuel Cell System
,”
J. Power Sources
,
195
(
9
), pp.
2754
2763
.10.1016/j.jpowsour.2009.10.095
6.
Zhang
,
Z.
,
Wang
,
X.
,
Zhang
,
X.
, and
Jia
,
L.
,
2008
, “
Optimizing the Performance of a Single PEM Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
5
, p.
031007
.10.1115/1.2889051
7.
Secanell
,
M.
,
Carnes
,
B.
,
Suleman
,
A.
, and
Djilali
,
N.
,
2006
, “
Numerical Optimization of Proton Exchange Membrane Fuel Cell Cathodes
,”
Electrochim. Acta
,
52
, pp.
2668
2682
.10.1016/j.electacta.2006.09.049
8.
Secanell
,
M.
,
Karan
,
K.
,
Suleman
,
A.
, and
Djilali
,
N.
,
2008
, “
Optimal Design of Ultralow-Platinum PEMFC Anode Electrodes
,”
J. Electrochem. Soc.
,
155
, pp.
B125
B134
.10.1149/1.2806171
9.
Chetty
,
R.
,
Scott
,
K.
,
Kundu
,
S.
, and
Muhler
,
M.
,
2010
, “
Optimization of Mesh-Based Anodes for Direct Methanol Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
7
, p.
031011
.10.1115/1.3117605
10.
Peng
,
L.
,
Lai
,
X.
,
Yi
,
P.
,
Mai
,
J.
, and
Ni
,
J.
,
2011
, “
Design, Optimization, and Fabrication of Slotted-Interdigitated Thin Metallic Bipolar Plates for PEM Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
,
8
, p.
011002
.10.1115/1.4002229
11.
Xu
,
C.
,
Follmann
,
P. M.
,
Biegler
,
L.T.
, and
Jhon
,
M. S.
,
2005
, “
Numerical Simulation and Optimization of a Direct Methanol Fuel Cell
,”
Comput. Chem. Eng.
,
29
, pp.
1849
1860
.10.1016/j.compchemeng.2005.03.007
12.
Yeh
,
T. K.
, and
Chen
,
C. H.
,
2008
, “
Modeling and Optimizing the Performance of a Passive Direct Methanol Fuel Cell
,”
J. Power Sources
,
175
, pp.
353
362
.10.1016/j.jpowsour.2007.09.016
13.
Ko
,
D.
,
Lee
,
M.
,
Jang
,
W. H.
, and
Krewer
,
U.
,
2008
, “
Non-Isothermal Dynamic Modeling and Optimization of a Direct Methanol Fuel Cell
,”
J. Power Sources
,
180
, pp.
71
83
.10.1016/j.jpowsour.2008.01.083
14.
Alotto
,
P.
,
Guarnieri
,
M.
, and
Moro
,
F.
,
2009
, “
Optimal Design of Micro Direct Methanol Fuel Cells for Low-Power Applications
,”
IEEE Trans. Magn.
,
45
(
3
), pp.
1570
1573
.10.1109/TMAG.2009.2012745
15.
Basri
,
S.
,
Kamarudin
,
S. K.
,
Daud
,
W. R. W.
, and
Ahmad
,
M. M.
,
2010
, “
Non-Linear Optimization of Passive Direct Methanol Fuel Cell (DMFC)
,”
Int. J. Hydrogen Energy
,
35
, pp.
1759
1768
.10.1016/j.ijhydene.2009.12.057
16.
Woudstra
,
N.
,
van der Stelt
,
T. P.
, and
Hemmes
,
K.
,
2006
, “
The Thermodynamic Evaluation and Optimization of Fuel Cell Systems
,”
ASME J. Fuel Cell Sci. Technol.
,
3
, pp.
155
164
.10.1115/1.2174064
17.
Elliott
,
L.
,
Anderson
,
W. K.
, and
Kapadia
,
S.
,
2009
, “
Solid Oxide Fuel Cell Design Optimization With Numerical Adjoint Techniques
,”
ASME J. Fuel Cell Sci. Technol.
,
6
, p.
041018
.10.1115/1.3006199
18.
Funahashi
,
Y.
,
Shimamori
,
T.
,
Suzuki
,
T.
,
Fujishiro
,
Y.
, and
Awano
,
M.
,
2010
, “
Simulation Study for the Optimization of Microtubular Solid Oxide Fuel Cell Bundles
,”
ASME J. Fuel Cell Sci. Technol.
,
7
, p.
021015
.10.1115/1.3177384
19.
Wang
,
Z. H.
, and
Wang
,
C. Y.
,
2003
, “
Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cell
,”
J. Electrochem. Soc.
,
150
(
4
), pp.
A508
A519
.10.1149/1.1559061
20.
Ge
,
J.
, and
Liu
,
H.
,
2006
, “
A Three-Dimensional Mathematical Model for Liquid-Fed Direct Methanol Fuel Cells
,”
J. Power Sources
,
160
, pp.
412
421
.10.1016/j.jpowsour.2006.02.001
21.
Ge
,
J.
, and
Liu
,
H.
,
2007
, “
A Three-Dimensional Two-Phase Flow Model for a Liquid-Fed Direct Methanol Fuel Cell
,”
J. Power Sources
,
163
, pp.
907
915
.10.1016/j.jpowsour.2006.10.014
22.
Liu
,
W.
, and
Wang
,
C.
,
2007
, “
Three-Dimensional Simulations of Liquid Feed Direct Methanol Fuel Cells
,”
J. Electrochem. Soc.
,
154
(
3
), pp.
B352
B361
.10.1149/1.2429041
23.
Yang
,
H.
,
Zhao
,
T. S.
, and
Ye
,
Q.
,
2005
, “
In Situ Visualization Study of CO2 Gas Bubble Behavior in DMFC Anode Fields
,”
J. Power Sources
,
139
, pp.
79
90
.10.1016/j.jpowsour.2004.05.033
24.
Zhou
,
T.
, and
Liu
,
H.
,
2001
, “
A General Three-Dimensional Model for Proton Exchange Membrane Fuel Cells
,”
Int. J. Transp. Phenom.
,
3
, pp.
177
198
.
25.
O'Hayre
,
R.
,
Cha
,
S. W.
,
Colella
,
W.
, and
Prinz
,
F. B.
,
2006
,
Fuel Cell Fundamentals
, 1st ed.,
Wiley
,
New York
.
26.
Marr
,
C.
, and
Li
,
X.
,
1999
, “
Composition and Performance Modeling of Catalyst Layer in a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
77
(
1
), pp.
17
27
.10.1016/S0378-7753(98)00161-X
27.
Alfa
,
2011
, “
Alfa Aesar
,” www.alfa.com
28.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
29.
Rao
,
S. S.
,
Pan
,
T. S.
, and
Venkayya
,
V. B.
,
1991
, “
Optimal Placement of Actuators in Actively Controlled Structures Using Genetic Algorithms
,”
AIAA J.
,
29
, pp.
942
943
.10.2514/3.10683
30.
Rao
,
S. S.
,
2009
,
Engineering Optimization: Theory and Practice
,
Wiley
,
New York
.
31.
Shukla
,
A. K.
,
Jackson
,
K.
,
Scott
,
K.
, and
Murgia
,
G.
,
2002
, “
A Solid-Polymer Electrolyte Direct Methanol Fuel Cell With a Mixed Reactant and Air Anode
,”
J. Power Sources
,
111
, pp.
42
51
.10.1016/S0378-7753(02)00232-X
32.
Scott
,
K.
,
Argyropouos
,
P.
, and
Sundmacher
,
K.
,
1999
, “
A Model for the Liquid Feed Direct Methanol Fuel Cell
,”
J. Electroanal. Chem.
,
477
, pp.
97
110
.10.1016/S0022-0728(99)00359-9
33.
Bernardy
,
D. M.
, and
Verbrugge
,
M. W.
,
1992
, “
Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
139
(
9
), pp.
2477
2491
.10.1149/1.2221251
34.
Baxter
,
S. F.
,
Battaglia
,
V. S.
, and
White
,
R. E.
,
1999
, “
Methanol Fuel Cell Model: Anode
,”
J. Electrochem. Soc.
,
146
(
2
), pp.
437
447
.10.1149/1.1391626
35.
Cai
,
K.
,
Yin
,
G.
,
Zhang
,
J.
,
Liu
,
P.
, and
Wang
,
Z.
,
2005
, “
Effect of Different Types of Nafion Membranes on Direct Dimethyl Ether Fuel Cell
,”
Electrochem. Commun.
,
7
,
1385
1388
.10.1016/j.elecom.2005.09.023
You do not currently have access to this content.