Abstract

The optimal operation of hydraulic systems heavily relies on the performance of their pumps and motors. However, these machines often encounter a phenomenon known as flow ripple that causes periodic fluctuations in the outlet flowrate of the pumps, negatively impacting system components and contributing to operational inefficiencies. This prevalent challenge highlights the need for accurate flow ripple modeling and the development of effective mitigation strategies. This paper presents a combined modeling and experimental approach to characterize the influence of the velocity trajectory of pistons in a positive displacement pump on the flow ripple. The study considers a three-cylinder variable displacement linkage pump (VDLP). The model combines the kinematics of the pump linkage mechanism, the pressure dynamics in its piston chambers, and the dynamics of the inlet and outlet check valves to predict the cylinder pressures and individual cylinder flow rates. A prototype VDLP was instrumented and tested to validate the simulation models. Two cylinders of the pump were deactivated, enabling the pump to run with a single pumping element to isolate the flow profile from a single cylinder, allowing for a more direct comparison of simulation versus experimental data. Experiments were run across a range of operating pressures and pump displacements. The results demonstrated a good agreement between the simulation and experimental data, with a normalized mean absolute error (NMAE) between 7% and 30% at the corner conditions. The validated models enable future optimization of the piston trajectory in the VDLP design used as an example architecture in this study to minimize flow ripple.

References

1.
Kim
,
J.-K.
,
Kim
,
H.-E.
,
Jung
,
J.-Y.
,
Oh
,
S.-H.
, and
Jung
,
S.-H.
,
2004
, “
Relation Between Pressure Variations and Noise in Axial Type Oil Piston Pumps
,”
KSME Int. J.
,
18
(
6
), pp.
1019
1025
.10.1007/BF02990874
2.
Ericson
,
L.
,
2011
, “
On Fluid Power Pump and Motor Design: Tools for Noise Reduction
,” Ph.D. dissertation,
Linköping Studies in Science and Technology
, Linkoping, Sweden.
3.
Fiebig
,
W.
,
2007
, “
Location of Noise Sources in Fluid Power Machines
,”
Int. J. Occup. Saf. Ergon.
,
13
(
4
), pp.
441
450
.10.1080/10803548.2007.11105102
4.
Gao
,
P.
,
Yu
,
T.
,
Zhang
,
Y.
,
Wang
,
J.
, and
Zhai
,
J.
,
2021
, “
Vibration Analysis and Control Technologies of Hydraulic Pipeline System in Aircraft: A Review
,”
Chin. J. Aeronaut.
,
34
(
4
), pp.
83
114
.10.1016/j.cja.2020.07.007
5.
Lipscombe
,
B.
,
1986
, “
The Reduction of Gear Pump Pressure Ripple by Source Flow Modification
,” Ph.D. dissertation,
UMI Dissertation Publishing
,
Bath, UK
.
6.
Rocha
,
L. Z.
,
Johnston
,
N.
, and
Gerges
,
S. N.
,
2010
, “
Flow Ripple Reduction in Power Steering Hydraulic Pumps
,”
Fluid Power and Motion Control
, ASME,
Bath, UK
.
7.
Manring
,
N. D.
,
2000
, “
The Discharge Flow Ripple of an Axial-Piston Swash-Plate Type Hydrostatic Pump
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
2
), pp.
263
268
.10.1115/1.482452
8.
Mehta
,
V. S.
, and
Manring
,
N. D.
,
2010
, “
Piston Pump Noise Attenuation Through Modification of Piston Travel Trajectory
,”
ASME
Paper No. IMECE2010-37394.10.1115/IMECE2010-37394
9.
Ericson
,
L.
,
Johansson
,
A.
, and
Palmberg
,
J.-O.
,
2009
, “
Noise Reduction by Means of Non-Uniform Placement of Pistons in a Fluid Power Machine
,”
ASME
Paper No. DSCC2009-2645.10.1115/DSCC2009-2645
10.
Lyu
,
F.
,
Ye
,
S.
,
Zhang
,
J.
,
Xu
,
B.
,
Huang
,
W.
,
Xu
,
H.
, and
Huang
,
X.
,
2021
, “
Theoretical and Simulation Investigations on Flow Ripple Reduction of Axial Piston Pumps Using Nonuniform Distribution of Pistons
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
4
), p.
041008
.10.1115/1.4048859
11.
Chao
,
Q.
,
Zhang
,
J.
,
Xu
,
B.
,
Huang
,
H.
, and
Pan
,
M.
,
2019
, “
A Review of High-Speed Electro-Hydrostatic Actuator Pumps in Aerospace Applications: Challenges and Solutions
,”
ASME J. Mech. Des.
,
141
(
5
), p.
050801
.10.1115/1.4041582
12.
Seeniraj
,
G. K.
,
Zhao
,
M.
, and
Ivantysynova
,
M.
,
2011
, “
Effect of Combining Precompression Grooves, PCFV and DCFV on Pump Noise Generation
,”
Int. J. Fluid Power
,
12
(
3
), pp.
53
63
.10.1080/14399776.2011.10781037
13.
Seeniraj
,
G. K.
, and
Ivantysynova
,
M.
,
2006
, “
Impact of Valve Plate Design on Noise, Volumetric Efficiency and Control Effort in an Axial Piston Pump
,”
ASME
Paper No. IMECE2006-15001.10.1115/IMECE2006-15001
14.
Johansson
,
A.
,
Andersson
,
J.
, and
Palmberg
,
J. O.
,
2002
, “
Optimal Design of the Cross-Angle for Pulsation Reduction in Variable Displacement Pumps
,”
Proceedings of Bath Workshop on Power Transmission and Motion Control
, Bath, UK, Sept. 11–13, pp.
319
333
.
15.
Xu
,
B.
,
Ye
,
S.
,
Zhang
,
J.
, and
Zhang
,
C.
,
2016
, “
Flow Ripple Reduction of an Axial Piston Pump by a Combination of Cross-Angle and Pressure Relief Grooves: Analysis and Optimization
,”
J. Mech. Sci. Technol.
,
30
(
6
), pp.
2531
2545
.10.1007/s12206-016-0515-9
16.
Ouyang
,
X.
,
Li
,
L.
, and
Fang
,
X.
,
2015
, “
Research Status and Prospects of Resonant-Type Hydraulic Pulsation Attenuators
,”
J. Mech. Eng.
,
51
(
22
), pp.
168
175
.10.3901/JME.2015.22.168
17.
O'Shea
,
C.
,
2016
, “
Hydraulic Flow Ripple Cancellation Using the Primary Flow Source
,”
ASME
Paper No. FPMC2016-1783.10.1115/FPMC2016-1783
18.
Wilhelm
,
S. R.
, and
Van de Ven
,
J. D.
,
2011
, “
Synthesis of a Variable Displacement Linkage for a Hydraulic Transformer
,”
ASME
Paper No. DETC2011-47339.10.1115/DETC2011-47339
19.
Wilhelm
,
S.
, and
Van de Ven
,
J. D.
,
2013
, “
Efficiency Modeling and Experimental Validation of a Variable Displacement Linkage Pump
,”
ASME
Paper No. FPMC2013-4428.10.1115/FPMC2013-4428
20.
Wilhelm
,
S. R.
, and
Van de Ven
,
J. D.
,
2013
, “
Design and Testing of an Adjustable Linkage for a Variable Displacement Pump
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041008
.10.1115/1.4025122
21.
Fulbright
,
N. J.
, and
Van de Ven
,
J. D.
,
2018
, “
Dynamic Response of Pressure Compensated Variable Displacement Linkage Pump
,”
ASME
Paper No. FPMC2018-8825.10.1115/FPMC2018-8825
22.
Norton
,
R. L.
,
2020
,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
, 6th ed.,
McGraw-Hill Education
,
Worcester, MA
.
23.
Knutson
,
A. L.
, and
Van de Ven
,
J. D.
,
2016
, “
Modelling and Experimental Validation of the Displacement of a Check Valve in a Hydraulic Piston Pump
,”
Int. J. Fluid Power
,
17
(
2
), pp.
114
124
.10.1080/14399776.2016.1160718
24.
Cho
,
B.-H.
,
Lee
,
H.-W.
, and
Oh
,
J.-S.
,
2002
, “
Estimation Technique of Air Content in Automatic Transmission Fluid by Measuring Effective Bulk Modulus
,”
Int. J. Automot. Technol.
,
3
(
2
), pp.
57
61
.https://suicideslabs.com/dw/arc/papers/v3n2_3.pdf
25.
Endress+Hauser
,
2021
, “
Technical Information: Proline Promass 80E/83E – Coriolis Mass Flowmeter
,” Endress+Hauser, Reinach, Switzerland, accessed Oct. 29, 2024, https://portal.endress.com/wa001/dla/5000000/0221/000/06/TI00061DEN_1413.pdf
26.
Innas
,
2020
,
Performance of Hydrostatic Machines: Extensive Measurement Report
, Innas BV,
Breda, NL
.
You do not currently have access to this content.