Abstract

Modern battery systems exhibit a cyber-physical nature due to the extensive use of communication technologies in battery management. This makes modern cyber-physical battery systems vulnerable to cyber threats where an adversary can manipulate sensing and actuation signals to satisfy certain malicious objectives. In this work, we present a machine learning-based approach to enable resilience to adversarial attacks by detecting and estimating the attack and subsequently taking corrective action to mitigate the attack. In particular, we focus on false data injection type attacks on battery systems. The overall diagnostic algorithm consists of an adaptive boosting-based attack detector, a long short-term memory (LSTM) neural network-based attack estimator, and a corrective controller. The proposed algorithm is trained and tested by utilizing data from a complex battery electrochemical battery simulator. Simulation results are presented to verify the effectiveness of the approach.

References

1.
BOSCH
, 2024, “
Battery in the Cloud
,” BOSCH, Gerlingen, Germany, accessed Apr. 10, 2024, https://www.bosch-mobility-solutions.com/en/solutions/software-and-services/battery-in-the-cloud/battery-in-the-cloud/.
2.
Abuelsamid, S., 2020, “
GM To Use First Wireless Battery Management System In Ultium Battery Packs
,” Jersey City, NJ, accessed June 13, 2024, https://www.forbes.com/sites/samabuelsamid/2020/09/09/gm-to-use-first-wireless-battery-management-system-in-ultium-battery-packs/
3.
Li
,
S.
, and
Zhao
,
P.
,
2021
, “
Big Data Driven Vehicle Battery Management Method: A Novel Cyber-Physical System Perspective
,”
J. Energy Storage
,
33
, p.
102064
.10.1016/j.est.2020.102064
4.
Ye
,
J.
,
Guo
,
L.
,
Yang
,
B.
,
Li
,
F.
,
Du
,
L.
,
Guan
,
L.
, and
Song
,
W.
,
2021
, “
Cyber-Physical Security of Powertrain Systems in Modern Electric Vehicles: Vulnerabilities, Challenges, and Future Visions
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
9
(
4
), pp.
4639
4657
.10.1109/JESTPE.2020.3045667
5.
Miller
,
C.
,
2019
, “
Lessons Learned From Hacking a Car
,”
IEEE Des. Test
,
36
(
6
), pp.
7
9
.10.1109/MDAT.2018.2863106
6.
Bhusal
,
N.
,
Gautam
,
M.
, and
Benidris
,
M.
,
2020
, “
Cybersecurity of Electric Vehicle Smart Charging Management Systems
,” 52nd North American Power Symposium (
NAPS
), Tempe, AZ, Apr. 11–13, pp.
1
6
.10.1109/NAPS50074.2021.9449758
7.
Kharlamova
,
N.
,
Hashemi
,
S.
, and
Træholt
,
C.
,
2020
, “
The Cyber Security of Battery Energy Storage Systems and Adoption of Data-Driven Methods
,” IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (
AIKE
), Laguna Hills, CA, Dec. 9–13, pp.
188
192
.10.1109/AIKE48582.2020.00037
8.
Sripad
,
S.
,
Kulandaivel
,
S.
,
Pande
,
V.
,
Sekar
,
V.
, and
Viswanathan
,
V.
,
2017
, “
Vulnerabilities of Electric Vehicle Battery Packs to Cyberattacks
,” preprint
arXiv:1711.04822
.10.48550/arXiv.1711.04822
9.
Rahman
,
S.
,
Aburub
,
H.
,
Mekonnen
,
Y.
, and
Sarwat
,
A. I.
,
2018
, “
A Study of EV BMS Cyber Security Based on Neural Network SOC Prediction
,” IEEE/PES Transmission and Distribution Conference and Exposition (
TD
), Denver, CO, Apr. 16–19, pp.
1
5
.10.1109/TDC.2018.8440144
10.
Lee
,
H.-J.
,
Kim
,
K.-T.
,
Park
,
J.-H.
,
Bere
,
G.
,
Ochoa
,
J. J.
, and
Kim
,
T.
,
2021
, “
Convolutional Neural Network-Based False Battery Data Detection and Classification for Battery Energy Storage Systems
,”
IEEE Trans. Energy Convers.
,
36
(
4
), pp.
3108
3117
.10.1109/TEC.2021.3061493
11.
Dey
,
S.
, and
Khanra
,
M.
,
2021
, “
Cybersecurity of Plug-In Electric Vehicles: Cyberattack Detection During Charging
,”
IEEE Trans. Ind. Electron.
,
68
(
1
), pp.
478
487
.10.1109/TIE.2020.2965497
12.
Bere
,
G.
,
Ochoa
,
J. J.
,
Kim
,
T.
, and
Aenugu
,
I. R.
,
2020
, “
Blockchain-Based Firmware Security Check and Recovery for Battery Management Systems
,” IEEE Transportation Electrification Conference & Expo (
ITEC
),
Chicago, IL
, June 23–26, pp.
262
266
.10.1109/ITEC48692.2020.9161562
13.
Kim
,
T.
,
Ochoa
,
J.
,
Faika
,
T.
,
Mantooth
,
A.
,
Di
,
J.
,
Li
,
Q.
, and
Lee
,
Y.
,
2020
, “
An Overview of Cyber-Physical Security of Battery Management Systems and Adoption of Blockchain Technology
,”
IEEE J. Emerging Sel. Top. Power Electron.
, 10(1), pp.
1270
1281
.10.1109/JESTPE.2020.2968490
14.
Guo
,
L.
,
Ye
,
J.
, and
Yang
,
B.
,
2021
, “
Cyberattack Detection for Electric Vehicles Using Physics-Guided Machine Learning
,”
IEEE Trans. Transp. Electrification
,
7
(
3
), pp.
2010
2022
.10.1109/TTE.2020.3044524
15.
Xu
,
W.
, and
Teng
,
F.
,
2020
, “
A Deep Learning Based Detection Method for Combined Integrity-Availability Cyber Attacks in Power System
,” preprint
arXiv:2011.01816
.10.48550/arXiv.2011.01816
16.
Wang
,
L.
, and
Zhou
,
Q.
,
2019
, “
Physics-Guided Deep Learning for Time-Series State Estimation Against False Data Injection Attacks
,” North American Power Symposium (
NAPS
), Wichita, KS, Oct. 13–15, pp.
1
6
.10.1109/NAPS46351.2019.9000305
17.
Chen
,
W.
, and
Saif
,
M.
,
2006
, “
Unknown Input Observer Design for a Class of Nonlinear Systems: An LMI Approach
,”
American Control Conference
, Minneapolis, MN, June 14–16, p.
5
.10.1109/ACC.2006.1655461
18.
Chakrabarty
,
A.
, and
Corless
,
M.
,
2019
, “
Estimating Unbounded Unknown Inputs in Nonlinear Systems
,”
Automatica
,
104
, pp.
57
66
.10.1016/j.automatica.2019.02.050
19.
Koenig
,
D.
,
2006
, “
Observer Design for Unknown Input Nonlinear Descriptor Systems Via Convex Optimization
,”
IEEE Trans. Autom. Control
,
51
(
6
), pp.
1047
1052
.10.1109/TAC.2006.876807
20.
Delshad
,
S. S.
,
Johansson
,
A.
,
Darouach
,
M.
, and
Gustafsson
,
T.
,
2016
, “
Robust State Estimation and Unknown Inputs Reconstruction for a Class of Nonlinear Systems: Multiobjective Approach
,”
Automatica
,
64
, pp.
1
7
.10.1016/j.automatica.2015.10.051
21.
Kumbhar
,
S.
,
Faika
,
T.
,
Makwana
,
D.
,
Kim
,
T.
, and
Lee
,
Y.
,
2018
, “
Cybersecurity for Battery Management Systems in Cyber-Physical Environments
,” IEEE Transportation Electrification Conference and Expo (
ITEC
), Long Beach, CA, June 3–15, pp.
934
938
.10.1109/ITEC.2018.8450159
22.
Harnett
,
K.
,
Harris
,
B.
,
Chin
,
D.
, and
Watson
,
G.
,
2018
, “
DOE/DHS/DOT Volpe Technical Meeting on Electric Vehicle and Charging Station Cybersecurity Report
,” John A. Volpe National Transportation Systems Center (US), Report No. DOT-VNTSC-DOE-18-01.
23.
Santhanagopalan
,
S.
, and
White
,
R. E.
,
2006
, “
Online Estimation of the State of Charge of a Lithium Ion Cell
,”
J. Power Sources
,
161
(
2
), pp.
1346
1355
.10.1016/j.jpowsour.2006.04.146
24.
Di Domenico
,
D.
,
Stefanopoulou
,
A.
, and
Fiengo
,
G.
,
2010
, “
Lithium-Ion Battery State of Charge and Critical Surface Charge Estimation Using an Electrochemical Model-Based Extended Kalman Filter
,”
J. Dyn. Syst., Meas., Control
,
132
(
6
) p. 061302.10.1115/1.4002475
25.
Guo
,
M.
,
Sikha
,
G.
, and
White
,
R. E.
,
2011
, “
Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior
,”
J. Electrochem. Soc.
,
158
(
2
), p.
A122
.10.1149/1.3521314
26.
Firoozi
,
R.
,
Sattarzadeh
,
S.
, and
Dey
,
S.
,
2022
, “
Cylindrical Battery Fault Detection Under Extreme Fast Charging: A Physics-Based Learning Approach
,”
IEEE Trans. Energy Convers.
,
37
(
2
), pp.
1241
1250
.10.1109/TEC.2021.3112950
27.
Nejad
,
S.
,
Gladwin
,
D.
, and
Stone
,
D.
,
2016
, “
A Systematic Review of Lumped-Parameter Equivalent Circuit Models for Real-Time Estimation of Lithium-Ion Battery States
,”
J. Power Sources
,
316
, pp.
183
196
.10.1016/j.jpowsour.2016.03.042
28.
Sagi
,
O.
, and
Rokach
,
L.
,
2018
, “
Ensemble Learning: A Survey
,”
Wiley Interdiscip. Rev.: Data Min. Knowl. Discovery
,
8
(
4
), p.
e1249
.10.1002/widm.1249
29.
Zharmagambetov
,
A.
,
Gabidolla
,
M.
, and
Carreira-Perpiñán
,
M.
,
2021
, “
Improved Multiclass Adaboost for Image Classification: The Role of Tree Optimization
,” IEEE International Conference on Image Processing (
ICIP
), Anchorage, AK, Sept. 19–22, pp.
424
428
.10.1109/ICIP42928.2021.9506569
30.
Kong
,
W.
,
Dong
,
Z. Y.
,
Jia
,
Y.
,
Hill
,
D. J.
,
Xu
,
Y.
, and
Zhang
,
Y.
,
2019
, “
Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network
,”
IEEE Trans. Smart Grid
,
10
(
1
), pp.
841
851
.10.1109/TSG.2017.2753802
31.
Jia
,
X.
,
Willard
,
J.
,
Karpatne
,
A.
,
Read
,
J. S.
,
Zwart
,
J. A.
,
Steinbach
,
M.
, and
Kumar
,
V.
,
2021
, “
Physics-Guided Machine Learning for Scientific Discovery: An Application in Simulating Lake Temperature Profiles
,”
ACM/IMS Trans. Data Sci.
,
2
(
3
), pp.
1
26
.10.1145/3447814
32.
Yang
,
S.
,
Yu
,
X.
, and
Zhou
,
Y.
,
2020
, “
LSTM and GRU Neural Network Performance Comparison Study: Taking Yelp Review Dataset as an Example
,” International Workshop on Electronic Communication and Artificial Intelligence (
IWECAI
), Shanghai, China, June 12–14, pp.
98
101
.10.1109/IWECAI50956.2020.00027
33.
Zhou
,
D.
,
Zhuang
,
X.
, and
Zuo
,
H.
,
2022
, “
A Hybrid Deep Neural Network Based on Multi-Time Window Convolutional Bidirectional LSTM for Civil Aircraft APU Hazard Identification
,”
Chin. J. Aeronaut.
,
35
(
4
), pp.
344
361
.10.1016/j.cja.2021.03.031
34.
Fawcett
,
T.
,
2006
, “
An Introduction to ROC Analysis
,”
Pattern Recognit. Lett.
,
27
(
8
), pp.
861
874
.10.1016/j.patrec.2005.10.010
You do not currently have access to this content.