Abstract

Control co-design (CCD) offers a promising solution for coordinating plant and control design of complex systems to better meet next generation demands. Most CCD algorithms optimize open-loop control signals that solve the problem with a single horizon, yet yield system designs lacking robustness to uncertainties. Recent work has integrated modern model predictive control (MPC) policies into CCD. While this results in systems that are more robust, the recursive nature of receding-horizon MPC is computationally expensive and necessitates a bi-level (nested) optimization process to solve sequential MPC problems over smaller horizons. In this work, I present a single-level predictive control co-design (pCCD) optimization framework that approximates the solution to optimizing a recursive MPC within CCD within a single optimization horizon without the need for nested optimization. The pCCD framework leverages elements of static gain matrices as decision variables to integrate a predictive controller into the algorithm that approximates the benefits afforded by embedding a MPC policy in CCD. The formulation reduces algorithm computational complexity by optimizing over the entire operating horizon at once while retaining key robustness and constraint-handling advantages of MPC. Through a comparative case study for a dual-tank thermal management system, this work shows the pCCD algorithm yields superior robustness to disturbance uncertainties compared to an analogous open-loop CCD system while converging on an optimal system/control design with a 92% reduction in run time compared to an analogous system optimized using a recursive MPC policy within the same CCD algorithm.

References

1.
Doty
,
J.
,
Yerkes
,
K.
,
Byrd
,
L.
,
Murthy
,
J.
,
Alleyne
,
A.
,
Wolff
,
M.
,
Heister
,
S.
, and
Fisher
,
T. S.
,
2017
, “
Dynamic Thermal Management for Aerospace Technology: Review and Outlook
,”
J. Thermophys. Heat Transfer
,
31
(
1
), pp.
86
98
.10.2514/1.T4701
2.
Garimella
,
S. V.
,
Fleischer
,
A. S.
,
Murthy
,
J. Y.
,
Keshavarzi
,
A.
,
Prasher
,
R.
,
Patel
,
C.
,
Bhavnani
, et al.,
2008
, “
Thermal Challenges in Next-Generation Electronic Systems
,”
IEEE Trans. Compon. Packaging Technol.
,
31
(
4
), pp.
801
815
.10.1109/TCAPT.2008.2001197
3.
Allison
,
J. T.
,
Guo
,
T.
, and
Han
,
Z.
,
2014
, “
Co-Design of an Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081003
.10.1115/1.4027335
4.
Nash
,
A. L.
, and
Jain
,
N.
,
2019
, “
Combined Plant and Control co-Design for Robust Disturbance Rejection in Thermal-Fluid Systems
,”
IEEE Trans. Control Syst. Technol.
, 28(6), pp.
2532
2539
.10.1109/TCST.2019.2931493
5.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2019
, “
A Problem Class With Combined Architecture, Plant, and Control Design Applied to Vehicle Suspensions
,”
ASME J. Mech. Des.
,
141
(
10
), p.
101401
.10.1115/1.4043312
6.
Fathy
,
H. K.
,
Papalambros
,
P. Y.
,
Ulsoy
,
A. G.
, and
Hrovat
,
D.
,
2003
, “
Nested Plant/Controller Optimization With Application to Combined Passive/Active Automotive Suspensions
,”
Proceedings of the 2003 American Control Conference
, Denver, CO, June 4–6, pp.
3375
3380
.10.1109/ACC.2003.1244053
7.
Hung
,
Y.-H.
, and
Wu
,
C.-H.
,
2015
, “
A Combined Optimal Sizing and Energy Management Approach for Hybrid in-Wheel Motors of EVs
,”
Appl. Energy
,
139
, pp.
260
271
.10.1016/j.apenergy.2014.11.028
8.
Youcef-Toumi
,
K.
,
1996
, “
Modeling, Design, and Control Integration: A Necessary Step in Mechatronics
,”
IEEE/ASME Trans. Mechatron.
,
1
(
1
), pp.
29
38
.10.1109/3516.491407
9.
Azad
,
S.
, and
Herber
,
D. R.
,
2023
, “
An Overview of Uncertain Control co-Design Formulations
,”
ASME J. Mech. Des.
,
145
(
9
), p.
091709
.10.1115/1.4062753
10.
Tsai
,
Y.-K.
, and
Malak
,
R. J.
,
2023
, “
Robust Control co-Design Using Tube-Based Model Predictive Control
,” American Control Conference (
ACC
), San Diego, CA, May 31–June 2 pp.
769
775
.10.23919/ACC55779.2023.10156303
11.
Aksland
,
C. T.
,
Clark
,
D. L.
,
Lupp
,
C. A.
, and
Alleyne
,
A. G.
,
2023
, “
An Approach to Robust co-Design of Plant and Closed-Loop Controller
,” IEEE Conference on Control Technology and Applications (
CCTA
), Bridgetown, Barbados, Aug. 16–18, pp.
918
925
.10.1109/CCTA54093.2023.10252170
12.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2014
, “
Special Section on Multidisciplinary Design Optimization: Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA J.
,
52
(
4
), pp.
691
710
.10.2514/1.J052182
13.
Goodwin
,
G.
,
Graebe
,
S.
, and
Salgado
,
M.
,
2001
,
Control System Design
,
Prentice Hall
, Hoboken, NJ.https://books.google.co.in/books/about/Control_System_Design.html?id=7dNSAAAAMAAJ&redir_esc=y
14.
Garcia-Sanz
,
M.
,
2019
, “
Control co-Design: An Engineering Game Changer
,”
Adv. Control Appl.: Eng. Ind. Syst.
,
1
(
1
), p.
e18
.10.1002/adc2.18
15.
Nash
,
A.
, and
Jain
,
N.
,
2020
, “
Hierarchical Control Co-Design Using a Model Fidelity-Based Decomposition Framework
,”
ASME J. Mech. Des.
,
143
(
1
), p. 011708.10.1115/1.4047691
16.
Deshmukh
,
A. P.
,
Herber
,
D. R.
, and
Allison
,
J. T.
,
2015
, “
Bridging the Gap Between Open-Loop and Closed-Loop Control in co-Design: A Framework for Complete Optimal Plant and Control Architecture Design
,” American Control Conference (
ACC
), Chicago, IL, July, 1–3, pp.
4916
4922
.10.1109/ACC.2015.7172104
17.
Diangelakis
,
N. A.
,
Burnak
,
B.
,
Katz
,
J.
, and
Pistikopoulos
,
E. N.
,
2017
, “
Process Design and Control Optimization: A Simultaneous Approach by Multi-Parametric Programming
,”
AIChE J.
,
63
(
11
), pp.
4827
4846
.10.1002/aic.15825
18.
Nash
,
A. L.
,
Pangborn
,
H. C.
, and
Jain
,
N.
,
2021
, “
Robust Control Co-Design With Receding-Horizon MPC
,”
American Control Conference
, New Orleans, LA, May 25–28.10.23919/ACC50511.2021.9483216
19.
Kim
,
M.-J.
, and
Peng
,
H.
,
2007
, “
Power Management and Design Optimization of Fuel Cell/Battery Hybrid Vehicles
,”
J. Power Sources
,
165
(
2
), pp.
819
832
.10.1016/j.jpowsour.2006.12.038
20.
Limebeer
,
D. J. N.
,
Kasenally
,
E. M.
, and
Perkins
,
J. D.
,
1993
, “
On the Design of Robust Two Degree of Freedom Controllers
,”
Automatica
,
29
(
1
), pp.
157
168
.).10.1016/0005-1098(93)90179-W
21.
Huang
,
B.
,
Shah
,
S. L.
, and
Miller
,
R.
,
2000
, “
Feedforward Plus Feedback Controller Performance Assessment of MIMO Systems
,”
IEEE Trans. Control Syst. Technol.
,
8
(
3
), pp.
580
587
.10.1109/87.845889
22.
Doman
,
D. B.
,
2018
, “
Fuel Flow Topology and Control for Extending Aircraft Thermal Endurance
,”
AIAA J.
,
32
(
1
), pp.
35
50
.10.2514/1.T5142
23.
Huang
,
P. G.
, and
Doman
,
D. B.
,
2018
, “
Thermal Management of Single- and Dual-Tank Fuel-Flow Topologies Using an Optimal Control Strategy
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041019
.10.1115/1.4040036
24.
Peddada
,
S. R.
,
Herber
,
D. R.
,
Pangborn
,
H. C.
,
Alleyne
,
A. G.
, and
Allison
,
J. T.
,
2019
, “
Optimal Flow Control and Single Split Architecture Exploration for Fluid-Based Thermal Management
,”
ASME J. Mech. Des.
,
141
(
8
), p.
083401
.10.1115/1.4043203
25.
Lofberg
,
J.
,
2003
, “
Approximations of Closed-Loop Minimax MPC
,”
42nd IEEE International Conference on Decision and Control
, Maui, HI, Dec. 9–12.10.1109/CDC.2003.1272813
26.
Currie
,
J.
, and
Wilson
,
D.
,
2012
, “
OPTI: Lowering the Barrier Between Open Source Optimizers and the Industrial Matlab User
,”
Foundations of Computer-Aided Process Operations
, Savannah, GA, Jan.https://www.researchgate.net/publication/267365734_Opti_Lowering_the_Barrier_Between_Open_Source_Optimizers_and_the_Industrial_MAT LAB_User
27.
Lofberg
,
J.
,
2004
, “
YALMIP: A Toolbox for Modeling and Optimization in MATLAB
,”
IEEE International Symposium on Computer Aided Control Systems Design
, Taipei, Taiwan, Sept. 2–4, pp.
284
289
.10.1109/CACSD.2004.1393890
You do not currently have access to this content.