Abstract

Advanced control strategies for delivering heat to users in a district heating network have the potential to improve performance and reduce wasted energy. To enable the design of such controllers, this paper proposes an automated plant modeling framework that captures the relevant system dynamics, while being adaptable to any network configuration. Starting from the network topology and system parameters, the developed algorithm generates a state-space model of the system, relying on a graph-based technique to facilitate the combination of component models into a full network model. The accuracy of the approach is validated against experimental data collected from a laboratory-scale district heating network. The verification shows an acceptable average normalized root-mean-square error of 0.39 in the mass flow rates delivered to the buildings, and 0.15 in the network return temperature. Furthermore, the ability of the proposed modeling technique to rapidly generate models characterizing different network configurations is demonstrated through its application to topology optimization. The optimal design, obtained via a branch and bound algorithm, reduces network heat losses by 15% as compared to the conventional length-minimized topology.

References

1.
De Lorenzi
,
A.
,
Gambarotta
,
A.
,
Morini
,
M.
,
Rossi
,
M.
, and
Saletti
,
C.
,
2020
, “
Setup and Testing of Smart Controllers for Small-Scale District Heating Networks: An Integrated Framework
,”
Energy
,
205
, p.
118054
.10.1016/j.energy.2020.118054
2.
Potočnik
,
P.
,
Škerl
,
P.
, and
Govekar
,
E.
,
2021
, “
Machine-Learning-Based Multi-Step Heat Demand Forecasting in a District Heating System
,”
Energy Build.
,
233
, p.
110673
.10.1016/j.enbuild.2020.110673
3.
Xue
,
P.
,
Jiang
,
Y.
,
Zhou
,
Z.
,
Chen
,
X.
,
Fang
,
X.
, and
Liu
,
J.
,
2020
, “
Machine Learning-Based Leakage Fault Detection for District Heating Networks
,”
Energy Build.
,
223
, p.
110161
.10.1016/j.enbuild.2020.110161
4.
Wang
,
H.
,
Meng
,
H.
, and
Zhu
,
T.
,
2018
, “
New Model for Onsite Heat Loss State Estimation of General District Heating Network With Hourly Measurements
,”
Energy Convers. Manage.
,
157
, pp.
71
85
.10.1016/j.enconman.2017.11.062
5.
Zhao
,
J.
, and
Shan
,
Y.
,
2019
, “
An Influencing Parameters Analysis of District Heating Network Time Delays Based on the CFD Method
,”
Energies
,
12
(
7
), p.
1297
.10.3390/en12071297
6.
Betancourt Schwarz
,
M.
,
Mabrouk
,
M. T.
,
Santo Silva
,
C.
,
Haurant
,
P.
, and
Lacarrière
,
B.
,
2019
, “
Modified Finite Volumes Method for the Simulation of Dynamic District Heating Networks
,”
Energy
,
182
, pp.
954
964
.10.1016/j.energy.2019.06.038
7.
van der Heijde
,
B.
,
Fuchs
,
M.
,
Ribas Tugores
,
C.
,
Schweiger
,
G.
,
Sartor
,
K.
,
Basciotti
,
D.
,
Müller
,
D.
,
Nytsch-Geusen
,
C.
,
Wetter
,
M.
, and
Helsen
,
L.
,
2017
, “
Dynamic Equation-Based Thermo-Hydraulic Pipe Model for District Heating and Cooling Systems
,”
Energy Convers. Manage.
,
151
, pp.
158
169
.10.1016/j.enconman.2017.08.072
8.
Saletti
,
C.
,
Zimmerman
,
N.
,
Morini
,
M.
,
Kyprianidis
,
K.
, and
Gambarotta
,
A.
,
2022
, “
A Control-Oriented Scalable Model for Demand Side Management in District Heating Aggregated Communities
,”
Appl. Therm. Eng.
,
201
, p.
117681
.10.1016/j.applthermaleng.2021.117681
9.
Vandermeulen
,
A.
,
Van Oevelen
,
T.
,
van der Heijde
,
B.
, and
Helsen
,
L.
,
2020
, “
A Simulation-Based Evaluation of Substation Models for Network Flexibility Characterisation in District Heating Networks
,”
Energy
,
201
, p.
117650
.10.1016/j.energy.2020.117650
10.
Felten
,
B.
,
2020
, “
An Integrated Model of Coupled Heat and Power Sectors for Large-Scale Energy System Analyses
,”
Appl. Energy
,
266
, p.
114521
.10.1016/j.apenergy.2020.114521
11.
Huo
,
S.
,
Wang
,
J.
,
Qin
,
Y.
, and
Cui
,
Z.
,
2022
, “
Operation Optimization of District Heating Network Under Typical Modes for Improving the Economic and Flexibility Performances of Integrated Energy System
,”
Energy Convers. Manage.
,
267
, p.
115904
.10.1016/j.enconman.2022.115904
12.
Simonsson
,
J.
,
Atta
,
K.
, and
Birk
,
W.
,
2022
, “
Reduced-Order Modeling of Thermal Dynamics in District Energy Networks Using Spectral Clustering
,”
IEEE Conference on Control Technology and Applications, CCTA
, Trieste, Italy, Aug. 23–25, pp.
144
150
.10.1109/CCTA49430.2022.9965996
13.
Guelpa
,
E.
, and
Verda
,
V.
,
2019
, “
Compact Physical Model for Simulation of Thermal Networks
,”
Energy
,
175
, pp.
998
1008
.10.1016/j.energy.2019.03.064
14.
Wack
,
Y.
,
Baelmans
,
M.
,
Salenbien
,
R.
, and
Blommaert
,
M.
,
2023
, “
Economic Topology Optimization of District Heating Networks Using a Pipe Penalization Approach
,”
Energy
,
264
, p.
126161
.10.1016/j.energy.2022.126161
15.
Su
,
L.
,
Nie
,
T.
,
On Ho
,
C.
,
Yang
,
Z.
,
Calvez
,
P.
,
Jain
,
R. K.
, and
Schwegler
,
B.
,
2022
, “
Optimizing Pipe Network Design and Central Plant Positioning of District Heating and Cooling System: A Graph-Based Multi-Objective Genetic Algorithm Approach
,”
Appl. Energy
,
325
, p.
119844
.10.1016/j.apenergy.2022.119844
16.
Williams
,
M. A.
,
Koeln
,
J. P.
,
Pangborn
,
H. C.
, and
Alleyne
,
A. G.
,
2017
, “
Dynamical Graph Models of Aircraft Electrical, Thermal, and Turbomachinery Components
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
4
), p.
041013
.10.1115/1.4038341
17.
Jogwar
,
S. S.
,
2019
, “
Distributed Control Architecture Synthesis for Integrated Process Networks Through Maximization of Strength of Input–Output Impact
,”
J. Process Control
,
83
, pp.
77
87
.10.1016/j.jprocont.2019.08.009
18.
Saletti
,
C.
,
Gambarotta
,
A.
, and
Morini
,
M.
,
2020
, “
Development, Analysis and Application of a Predictive Controller to a Small-Scale District Heating System
,”
Appl. Therm. Eng.
,
165
, p.
114558
.10.1016/j.applthermaleng.2019.114558
19.
Nussbaumer
,
T.
,
Thalmann
,
S.
,
Jenni
,
A.
, and
Ködel
,
J.
,
2020
,
Handbook on Planning of District Heating Networks
,
Swiss Federal Office of Energy
, Bern, Switzerland.
20.
Bøhm
,
B.
,
Ha
,
S.-K.
,
Kim
,
W.-T.
,
Kim
,
B.-K.
,
Koljonen
,
T.
,
Larsen
,
H. V.
,
Lucht
,
M.
, et al.,
2002
, “
Simple Models for Operational Optimisation
,”
International Energy Agency
, Report No. 2002: S1.
21.
Blizard
,
A.
, and
Stockar
,
S.
,
2023
, “
A Dynamically Similar Lab-Scale District Heating Network Via Dimensional Analysis
,”
Energy Convers. Manage.
,
293
, p.
117446
.10.1016/j.enconman.2023.117446
22.
Pirouti
,
M.
,
Bagdanavicius
,
A.
,
Ekanayake
,
J.
,
Wu
,
J.
, and
Jenkins
,
N.
,
2013
, “
Energy Consumption and Economic Analyses of a District Heating Network
,”
Energy
,
57
, pp.
149
159
.10.1016/j.energy.2013.01.065
23.
Cimbala
,
J. M.
, and
Cengel
,
Y. A.
,
2006
,
Fluid Mechanics: Fundamentals and Applications
,
McGraw-Hill Higher Education
, New York.
24.
Gabrielaitiene
,
I.
,
Bøhm
,
B.
, and
Sunden
,
B.
,
2007
, “
Modelling Temperature Dynamics of a District Heating System in Naestved, Denmark–a Case Study
,”
Energy Convers. Manage.
,
48
(
1
), pp.
78
86
.10.1016/j.enconman.2006.05.011
25.
Ancona
,
M. A.
,
Branchini
,
L.
,
De Lorenzi
,
A.
,
De Pascale
,
A.
,
Gambarotta
,
A.
,
Melino
,
F.
, and
Morini
,
M.
,
2019
, “
Application of Different Modeling Approaches to a District Heating Network
,”
AIP Conf. Proc.
,
2191
(
1
), p.
020009
.10.1063/1.5138742
26.
Masatin
,
V.
,
Latõšev
,
E.
, and
Volkova
,
A.
,
2016
, “
Evaluation Factor for District Heating Network Heat Loss With Respect to Network Geometry
,”
Energy Proc.
,
95
, pp.
279
285
.10.1016/j.egypro.2016.09.069
27.
Edmonds
,
J.
,
1967
, “
Optimum Branchings
,”
J. Res. National Bureau Standards
,
71B
(
4
), pp.
233
240
.10.6028/jres.071B.032
28.
Manerba
,
D.
,
Mansini
,
R.
, and
Riera-Ledesma
,
J.
,
2017
, “
The Traveling Purchaser Problem and Its Variants
,”
Eur. J. Oper. Res.
,
259
(
1
), pp.
1
18
.10.1016/j.ejor.2016.12.017
You do not currently have access to this content.