Abstract

This article presents the design of a robust observer based on the discrete-time (DT) formulation of uncertainty and disturbance estimator (UDE), a well-known robust control technique, for the purpose of controlling robot manipulators. The design results in a complete closed-loop, robust, and controller–observer structure. The observer incorporates the estimate of the overall uncertainty associated with the plant, in order to mimic its dynamics, and the control law is generated using an auxiliary error instead of state tracking error. A detailed qualitative and quantitative stability analysis is provided, and simulations are performed on the two-link robot manipulator system. Further, a comparative study with well-known control strategies for robot manipulators is presented. The results demonstrate the efficacy of the proposed technique, with better tracking performance and lower control energy compared to other strategies.

References

1.
Sage
,
H. G.
,
De Mathelin
,
M. F.
, and
Ostertag
,
E.
,
1999
, “
Robust Control of Robot Manipulators: A Survey
,”
Int. J. Control
,
72
(
16
), pp.
1498
1522
.10.1080/002071799220137
2.
Spong
,
M. W.
, and
Vidyasagar
,
M.
,
1989
,
Robot Dynamics and Control
,
Wiley
,
Hoboken, NJ
.
3.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
4.
Khalil
,
H. K.
,
2015
,
Nonlinear Control
,
Pearson Education
,
Upper Saddle River, NJ
.
5.
Shi
,
J.
,
Liu
,
H.
, and
Bajcinca
,
N.
,
2008
, “
Robust Control of Robotic Manipulators Based on Integral Sliding Mode
,”
Int. J. Control
,
81
(
10
), pp.
1537
1548
.10.1080/00207170701749881
6.
Lee
,
J.
,
Chang
,
P. H.
, and
Jin
,
M.
,
2017
, “
Adaptive Integral Sliding Mode Control With Time-Delay Estimation for Robot Manipulators
,”
IEEE Trans. Ind. Electron.
,
64
(
8
), pp.
6796
6804
.10.1109/TIE.2017.2698416
7.
Islam
,
S.
, and
Liu
,
X. P.
,
2011
, “
Robust Sliding Mode Control for Robot Manipulators
,”
IEEE Trans. Ind. Electron.
,
58
(
6
), pp.
2444
2453
.10.1109/TIE.2010.2062472
8.
Van
,
M.
,
Mavrovouniotis
,
M.
, and
Ge
,
S. S.
,
2019
, “
An Adaptive Backstepping Nonsingular Fast Terminal Sliding Mode Control for Robust Fault Tolerant Control of Robot Manipulators
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
49
(
7
), pp.
1448
1458
.10.1109/TSMC.2017.2782246
9.
Su
,
Y.
, and
Zheng
,
C.
,
2020
, “
A New Nonsingular Integral Terminal Sliding Mode Control for Robot Manipulators
,”
Int. J. Syst. Sci.
,
51
(
8
), pp.
1418
1428
.10.1080/00207721.2020.1764658
10.
Nikoobin
,
A.
, and
Haghighi
,
R.
,
2009
, “
Lyapunov-Based Nonlinear Disturbance Observer for Serial n-Link Robot Manipulators
,”
J. Intell. Rob. Syst.
,
55
(
2–3
), pp.
135
153
.10.1007/s10846-008-9298-2
11.
Yang
,
Z.-J.
,
Fukushima
,
Y.
, and
Qin
,
P.
,
2012
, “
Decentralized Adaptive Robust Control of Robot Manipulators Using Disturbance Observers
,”
IEEE Trans. Control Syst. Technol.
,
20
(
5
), pp.
1357
1365
.10.1109/TCST.2011.2164076
12.
Mohammadi
,
A.
,
Tavakoli
,
M.
,
Marquez
,
H. J.
, and
Hashemzadeh
,
F.
,
2013
, “
Nonlinear Disturbance Observer Design for Robotic Manipulators
,”
Control Eng. Pract.
,
21
(
3
), pp.
253
267
.10.1016/j.conengprac.2012.10.008
13.
Homayounzade
,
M.
, and
Khademhosseini
,
A.
,
2019
, “
Disturbance Observer-Based Trajectory Following Control of Robot Manipulators
,”
Int. J. Control, Autom. Syst.
,
17
(
1
), pp.
203
211
.10.1007/s12555-017-0544-x
14.
Rigatos
,
G.
,
Siano
,
P.
, and
Raffo
,
G.
,
2017
, “
A Nonlinear H-Infinity Control Method for Multi-DOF Robotic Manipulators
,”
Nonlinear Dyn.
,
88
(
1
), pp.
329
348
.10.1007/s11071-016-3245-8
15.
Kharabian
,
B.
, and
Mirinejad
,
H.
,
2020
, “
Hybrid Sliding Mode/H-Infinity Control Approach for Uncertain Flexible Manipulators
,”
IEEE Access
,
8
, pp.
170452
170460
.10.1109/ACCESS.2020.3024150
16.
Jin
,
M.
,
Kang
,
S.-H.
,
Chang
,
P.-H.
, and
Lee
,
J.
,
2017
, “
Robust Control of Robot Manipulators Using Inclusive and Enhanced Time Delay Control
,”
IEEE/ASME Trans. Mechatronics
,
22
(
5
), pp.
2141
2152
.10.1109/TMECH.2017.2718108
17.
Cho
,
S.-J.
,
Lee
,
J. S.
,
Kim
,
J.
,
Kuc
,
T.-Y.
,
Chang
,
P.-H.
, and
Jin
,
M.
,
2017
, “
Adaptive Time-Delay Control With a Supervising Switching Technique for Robot Manipulators
,”
Trans. Inst. Meas. Control
,
39
(
9
), pp.
1374
1382
.10.1177/0142331216637118
18.
Baek
,
J.
,
Cho
,
S.
, and
Han
,
S.
,
2018
, “
Practical Time-Delay Control With Adaptive Gains for Trajectory Tracking of Robot Manipulators
,”
IEEE Trans. Ind. Electron.
,
65
(
7
), pp.
5682
5692
.10.1109/TIE.2017.2782238
19.
Ren
,
T.
,
Dong
,
Y.
,
Wu
,
D.
, and
Chen
,
K.
,
2018
, “
Collision Detection and Identification for Robot Manipulators Based on Extended State Observer
,”
Control Eng. Pract.
,
79
, pp.
144
153
.10.1016/j.conengprac.2018.07.004
20.
Sun
,
L.
, and
Liu
,
Y.
,
2020
, “
Extended State Observer Augmented Finite-Time Trajectory Tracking Control of Uncertain Mechanical Systems
,”
Mech. Syst. Signal Process.
,
139
, p.
106374
.10.1016/j.ymssp.2019.106374
21.
Jin
,
L.
,
Li
,
S.
,
Yu
,
J.
, and
He
,
J.
,
2018
, “
Robot Manipulator Control Using Neural Networks: A Survey
,”
Neurocomputing
,
285
, pp.
23
34
.10.1016/j.neucom.2018.01.002
22.
Nubert
,
J.
,
Köhler
,
J.
,
Berenz
,
V.
,
Allgöwer
,
F.
, and
Trimpe
,
S.
,
2020
, “
Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
3050
3057
.10.1109/LRA.2020.2975727
23.
Elsisi
,
M.
,
Mahmoud
,
K.
,
Lehtonen
,
M.
, and
Darwish
,
M. M. F.
,
2021
, “
An Improved Neural Network Algorithm to Efficiently Track Various Trajectories of Robot Manipulator Arms
,”
IEEE Access
,
9
, pp.
11911
11920
.10.1109/ACCESS.2021.3051807
24.
Lewis
,
F. L.
,
Jagannathan
,
S.
, and
Yeşilderek
,
A.
,
1999
,
Neural Network Control of Robot Manipulators and Non-Linear Systems
,
Taylor and Francis
,
Philadelphia, PA
.
25.
Ajwad
,
S. A.
,
Iqbal
,
J.
,
Islam
,
R. U.
,
Alsheikhy
,
A.
,
Almeshal
,
A.
, and
Mehmood
,
A.
,
2018
, “
Optimal and Robust Control of Multi DOF Robotic Manipulator: Design and Hardware Realization
,”
Cybern. Syst.
,
49
(
1
), pp.
77
93
.10.1080/01969722.2017.1412905
26.
Xu
,
J.
,
Du
,
Y.
,
Chen
,
Y.-H.
, and
Guo
,
H.
,
2018
, “
Optimal Robust Control Design for Constrained Uncertain Systems: A Fuzzy-Set Theoretic Approach
,”
IEEE Trans. Fuzzy Syst.
,
26
(
6
), pp.
3494
3505
.10.1109/TFUZZ.2018.2834320
27.
Zhong
,
Q.-C.
, and
Rees
,
D.
,
2004
, “
Control of Uncertain LTI Systems Based on an Uncertainty and Disturbance Estimator
,”
ASME J. Dyn. Syst., Meas. Control
,
126
(
4
), pp.
905
910
.10.1115/1.1850529
28.
Talole
,
S. E.
,
Chandar
,
T. S.
, and
Kolhe
,
J. P.
,
2011
, “
Design and Experimental Validation of UDE Based Controller–Observer Structure for Robust Input–Output Linearisation
,”
Int. J. Control
,
84
(
5
), pp.
969
984
.10.1080/00207179.2011.584352
29.
Kolhe
,
J. P.
,
Shaheed
,
M.
,
Chandar
,
T. S.
, and
Talole
,
S. E.
,
2013
, “
Robust Control of Robot Manipulators Based on Uncertainty and Disturbance Estimation
,”
Int. J. Robust Nonlinear Control
,
23
(
1
), pp.
104
122
.10.1002/rnc.1823
30.
Majidabad
,
S. S.
, and
Shandiz
,
H. T.
,
2012
, “
Discrete–Time Based Sliding–Mode Control of Robot Manipulators
,”
Int. J. Intell. Comput. Cybern.
,
5
(
3
), pp.
340
358
.10.1108/17563781211255880
31.
Tsai
,
M. C.
,
Anwar
,
G.
, and
Tomizuka
,
M.
,
1988
, “
Discrete Time Repetitive Control for Robot Manipulators
,”
IEEE International Conference on Robotics and Automation
, Philadelphia, PA, Apr., pp.
1341
1346
.
32.
Yang
,
R.
,
Yang
,
C.
,
Chen
,
M.
, and
Annamalai
,
A. S. K.
,
2017
, “
Discrete-Time Optimal Adaptive RBFNN Control for Robot Manipulators With Uncertain Dynamics
,”
Neurocomputing
,
234
, pp.
107
115
.10.1016/j.neucom.2016.12.048
33.
Del Prete
,
A.
,
2018
, “
Joint Position and Velocity Bounds in Discrete-Time Acceleration/Torque Control of Robot Manipulators
,”
IEEE Rob. Autom. Lett.
,
3
(
1
), pp.
281
288
.10.1109/LRA.2017.2738321
34.
Kali
,
Y.
,
Saad
,
M.
,
Benjelloun
,
K.
, and
Fatemi
,
A.
,
2017
, “
Discrete-Time Second Order Sliding Mode With Time Delay Control for Uncertain Robot Manipulators
,”
Rob. Auton. Syst.
,
94
, pp.
53
60
.10.1016/j.robot.2017.04.010
35.
Padmanabhan
,
R.
,
Shetty
,
M.
, and
Chandar
,
T. S.
,
2021
, “
Discrete-Time Design and Applications of Uncertainty and Disturbance Estimator
,”
Int. J. Robust Nonlinear Control
,
31
(
10
), pp.
4994
5015
.10.1002/rnc.5518
36.
Nijmeijer
,
H.
, and
van der Schaft
,
A. J.
,
1990
,
Nonlinear Dynamical Control Systems
,
Springer-Verlag
,
New York
.
37.
Talole
,
S. E.
, and
Phadke
,
S. B.
,
2009
, “
Robust Input–Output Linearisation Using Uncertainty and Disturbance Estimation
,”
Int. J. Control
,
82
(
10
), pp.
1794
1803
.10.1080/00207170902756552
38.
Chandar
,
T. S.
, and
Talole
,
S. E.
,
2014
, “
Improving the Performance of UDE-Based Controller Using a New Filter Design
,”
Nonlinear Dyn.
,
77
(
3
), pp.
753
768
.10.1007/s11071-014-1337-x
You do not currently have access to this content.