Abstract

Resistor–capacitor (RC) response time models for pressurizing and depressurizing a pneumatic capacitor (mass accumulator) through a resistor (flow restriction) comprise a framework to systematically analyze complex fluidic circuits. A model for pneumatic resistance is derived from a combination of fundamental fluid mechanics and experimental results. Models describing compressible fluid capacitance are derived from thermodynamic first principles and validated experimentally. The models are combined to derive the ordinary differential equations that describe the RC dynamics. These equations are solved analytically for rigid capacitors and numerically for deformable capacitors to generate pressure response curves as a function of time. The dynamic pressurization and depressurization response times to reach 63.2% (or 1e1) of exponential decay are validated in simple pneumatic circuits with combinations of flow restrictions ranging from 100 μm to 1 mm in diameter, source pressures ranging from 5 to 200 kPa, and capacitor volumes of 0.5 to 16 mL. Our RC models predict the response times, which range from a few milliseconds to multiple seconds depending on the combination, with a coefficient of determination of r2=0.983. The utility of the models is demonstrated in a multicomponent fluidic circuit to find the optimal diameter of tubing between a three-way electromechanical valve and a pneumatic capacitor to minimize the response time for the changing pressure in the capacitor. These lumped-parameter models represent foundational blocks upon which timing models of pneumatic circuits can be built for a variety of applications from soft robotics and industrial automation to high-speed microfluidics.

References

1.
Gluskin
,
R.
,
Jacoby
,
M.
, and
Reader
,
T.
,
1964
, “
Flodac: A Pure Fluid Digital Computer
,”
Proceedings of the Fall Joint Computer Conference
, San Francisco, CA, Oct. 27–29, pp.
631
641
.
2.
Thorsen
,
T.
,
Maerkl
,
S. J.
, and
Quake
,
S. R.
,
2002
, “
Microfluidic Large-Scale Integration
,”
Science
,
298
(
5593
), pp.
580
584
.10.1126/science.1076996
3.
Wehner
,
M.
,
Truby
,
R. L.
,
Fitzgerald
,
D. J.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
,
Lewis
,
J. A.
, and
Wood
,
R. J.
,
2016
, “
An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots
,”
Nature
,
536
(
7617
), pp.
451
455
.10.1038/nature19100
4.
Vasios
,
N.
,
Gross
,
A. J.
,
Soifer
,
S.
,
Overvelde
,
J. T.
, and
Bertoldi
,
K.
,
2020
, “
Harnessing Viscous Flow to Simplify the Actuation of Fluidic Soft Robots
,”
Soft Rob.
,
7
(
1
), pp.
1
9
.10.1089/soro.2018.0149
5.
Preston
,
D. J.
,
Jiang
,
H. J.
,
Sanchez
,
V.
,
Rothemund
,
P.
,
Rawson
,
J.
,
Nemitz
,
M. P.
,
Lee
,
W.-K.
,
Suo
,
Z.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2019
, “
A Soft Ring Oscillator
,”
Sci. Rob.
,
4
(
31
), p.
eaaw5496
.10.1126/scirobotics.aaw5496
6.
Li
,
S.-S.
, and
Cheng
,
C.-M.
,
2013
, “
Analogy Among Microfluidics, Micromechanics, and Microelectronics
,”
Lab Chip
,
13
(
19
), p.
3782
.10.1039/c3lc50732g
7.
Perdigones
,
F.
,
Luque
,
A.
, and
Quero
,
J. M.
,
2014
, “
Correspondence Between Electronics and Fluids in MEMS: Designing Microfluidic Systems Using Electronics
,”
IEEE Ind. Electron. Mag.
,
8
(
4
), pp.
6
17
.10.1109/MIE.2014.2318062
8.
Duncan
,
P. N.
,
Nguyen
,
T. V.
, and
Hui
,
E. E.
,
2013
, “
Pneumatic Oscillator Circuits for Timing and Control of Integrated Microfluidics
,”
Proc. Natl. Acad. Sci.
,
110
(
45
), pp.
18104
18109
.10.1073/pnas.1310254110
9.
Cartas-Ayala
,
M. A.
, and
Karnik
,
R.
,
2014
, “
Time Limitations and Geometrical Parameters in the Design of Microfluidic Comparators
,”
Microfluid. Nanofluid.
,
17
(
2
), pp.
359
373
.10.1007/s10404-013-1302-x
10.
Weaver
,
J. A.
,
Melin
,
J.
,
Stark
,
D.
,
Quake
,
S. R.
, and
Horowitz
,
M. A.
,
2010
, “
Static Control Logic for Microfluidic Devices Using Pressure-Gain Valves
,”
Nat. Phys.
,
6
(
3
), pp.
218
223
.10.1038/nphys1513
11.
Schulte
,
T. H.
,
Bardell
,
R. L.
, and
Weigl
,
B. H.
,
2002
, “
Microfluidic Technologies in Clinical Diagnostics
,”
Clin. Chim. Acta
,
321
(
1–2
), pp.
1
10
.10.1016/S0009-8981(02)00093-1
12.
Cousseau
,
P.
,
Hirschi
,
R.
,
Frehner
,
B.
,
Gamper
,
S.
, and
Maillefer
,
D.
,
2001
, “
Improved Micro-Flow Regulator for Drug Delivery Systems
,”
14th IEEE International Conference on Micro Electro Mechanical Systems In Technical Digest
(
MEMS
2001),
Interlaken, Switzerland, Jan. 25, pp.
527
530
.10.1109/MEMSYS.2001.906595
13.
Groisman
,
A.
, and
Quake
,
S. R.
,
2004
, “
A Microfluidic Rectifier: Anisotropic Flow Resistance at Low Reynolds Numbers
,”
Phys. Rev. Lett.
,
92
(
9
), p.
094501
.10.1103/PhysRevLett.92.094501
14.
Cristobal
,
G.
,
Benoit
,
J.-P.
,
Joanicot
,
M.
, and
Ajdari
,
A.
,
2006
, “
Microfluidic Bypass for Efficient Passive Regulation of Droplet Traffic at a Junction
,”
Appl. Phys. Lett.
,
89
(
3
), p.
034104
.10.1063/1.2221929
15.
Vourdas
,
N.
,
Moschou
,
D. C.
,
Papadopoulos
,
K. A.
,
Davazoglou
,
D.
, and
Stathopoulos
,
V. N.
,
2018
, “
A New Microfluidic Pressure-Controlled Field Effect Transistor (pFET) in Digital Fluidic Switch Operation Mode
,”
Microelectron. Eng.
,
190
, pp.
28
32
.10.1016/j.mee.2017.12.019
16.
Squires
,
T. M.
, and
Quake
,
S. R.
,
2005
, “
Microfluidics: Fluid Physics at the Nanoliter Scale
,”
Rev. Mod. Phys.
,
77
(
3
), pp.
977
1026
.10.1103/RevModPhys.77.977
17.
Russomanno
,
A.
,
Gillespie
,
R. B.
,
O'Modhrain
,
S.
, and
Barber
,
J.
,
2014
,
Modeling Pneumatic Actuators for a Refreshable Tactile Display
,
Springer
,
Berlin, Heidelberg
, pp.
385
393
.
18.
Kim
,
Y.
,
Kuczenski
,
B.
,
LeDuc
,
P. R.
, and
Messner
,
W. C.
,
2009
, “
Modulation of Fluidic Resistance and Capacitance for Long-Term, High-Speed Feedback Control of a Microfluidic Interface
,”
Lab Chip
,
9
(
17
), p.
2603
.10.1039/b822423d
19.
Leslie
,
D. C.
,
Easley
,
C. J.
,
Seker
,
E.
,
Karlinsey
,
J. M.
,
Utz
,
M.
,
Begley
,
M. R.
, and
Landers
,
J. P.
,
2009
, “
Frequency-Specific Flow Control in Microfluidic Circuits With Passive Elastomeric Features
,”
Nat. Phys.
,
5
(
3
), pp.
231
235
.10.1038/nphys1196
20.
Mosadegh
,
B.
,
Kuo
,
C.-H.
,
Tung
,
Y.-C.
,
Torisawa
,
Y.-S.
,
Bersano-Begey
,
T.
,
Tavana
,
H.
, and
Takayama
,
S.
,
2010
, “
Integrated Elastomeric Components for Autonomous Regulation of Sequential and Oscillatory Flow Switching in Microfluidic Devices
,”
Nat. Phys.
,
6
(
6
), pp.
433
437
.10.1038/nphys1637
21.
Bourouina
,
T.
, and
Grandchamp
,
J.-P.
,
1996
, “
Modeling Micropumps With Electrical Equivalent Networks
,”
J. Micromech. Microeng.
,
6
(
4
), pp.
398
404
.10.1088/0960-1317/6/4/006
22.
White
,
F. M.
,
1994
,
Fluid Mechanics
, WCB/McGraw-Hill, Boston, MA.
You do not currently have access to this content.