Abstract

This paper presents a novel controller for drill string systems based on a super-twisting sliding mode theory. The aim is to eliminate the stick-slip vibration and maintain a constant drill string velocity at the desired reference value. The proposed controller inherently attenuates the torsional vibration while ensuring the stability and high efficiency of the drill string. A discontinuous lumped-parameter torsional model of vertical drill strings based on four components (rotary table, drill pipes, drill collars, and drill bit) is considered. The Karnopp friction model is adopted to simulate the nonlinear bit-rock interaction phenomena. In order to provide a more accurate evaluation, the proposed drill string controller is implemented with the induction motor, a variable frequency drive, and a gearbox to closely mirror the real environment of oil well drill strings. The increasing demand for prototyping and testing high-power plants in realistic and safe environments has led to the advancement of new types of experimental investigations without hurting the real system or building a small-scale prototype for testing. The dynamic performance of the proposed controller has been investigated with matlab software and in a novel hardware-in-the-loop (HIL) testing platform. A power plant is modeled and implemented in the real-time simulator OPAL-RT 5600, whereas the controllers are implemented in the dSPACE 1103 control board. The results obtained through simulatiosn and HIL testing demonstrate the feasibility and high performance of the proposed controller.

References

1.
Alsaffar
,
Y.
,
Sassi
,
S.
, and
Baz
,
A.
,
2018
, “
Band Gap Characteristics of Nonrotating Passive Periodic Drill String
,”
ASME J. Vib. Acoust.
,
140
(
2
), p.
021004
.10.1115/1.4037851
2.
Liu
,
X.
,
Long
,
X.
,
Zheng
,
X.
,
Meng
,
G.
, and
Balachandran
,
B.
,
2020
, “
Spatial-Temporal Dynamics of a Drill String With Complex Time-Delay Effects: Bit Bounce and Stick-Slip Oscillations
,”
Int. J. Mech. Sci.
,
170
, p.
105338
.10.1016/j.ijmecsci.2019.105338
3.
Besselink
,
B.
,
Vromen
,
T.
,
Kremers
,
N.
, and
van de Wouw
,
N.
,
2016
, “
Analysis and Control of Stick-Slip Oscillations in Drilling Systems
,”
IEEE Trans. Control Syst. Technol.
,
24
(
5
), pp.
1582
1593
.10.1109/TCST.2015.2502898
4.
Vaziri
,
V.
,
Kapitaniak
,
M.
, and
Wiercigroch
,
M.
,
2018
, “
Suppression of Drill-String Stick–Slip Vibration by Sliding Mode Control: Numerical and Experimental Studies
,”
Eur. J. Appl. Math.
,
29
(
5
), pp.
805
825
.10.1017/S0956792518000232
5.
Liu
,
Y.
,
Chávez
,
J. P.
,
De Sa
,
R.
, and
Walker
,
S.
,
2017
, “
Numerical and Experimental Studies of Stick–Slip Oscillations in Drill-Strings
,”
Nonlinear Dyn.
,
90
(
4
), pp.
2959
2978
.10.1007/s11071-017-3855-9
6.
Besselink
,
B.
,
Van De Wouw
,
N.
, and
Nijmeijer
,
H.
,
2011
, “
A Semi-Analytical Study of Stick-Slip Oscillations in Drilling Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p. 021006.10.1115/1.4002386
7.
Aarsnes
,
U. J. F.
, and
van de Wouw
,
N.
,
2019
, “
Axial and Torsional Self-Excited Vibrations of a Distributed Drill-String
,”
J. Sound Vib.
,
444
, pp.
127
151
.10.1016/j.jsv.2018.12.028
8.
Ritto
,
T. G.
, and
Ghandchi-Tehrani
,
M.
,
2019
, “
Active Control of Stick-Slip Torsional Vibrations in Drill-Strings
,”
J. Vib. Control
,
25
(
1
), pp.
194
202
.10.1177/1077546318774240
9.
Hosseinzadeh
,
A.
, and
Bakhtiari-Nejad
,
F.
,
2017
, “
A New Dynamic Model of Coupled Axial–Torsional Vibration of a Drill String for Investigation on the Length Increment Effect on Stick–Slip Instability
,”
ASME J. Vib. Acoust.
,
139
(
6
), p. 061016.10.1115/1.4037299
10.
Saldivar
,
B.
,
Mondié
,
S.
,
Niculescu
,
S.-I.
,
Mounier
,
H.
, and
Boussaada
,
I.
,
2016
, “
A Control Oriented Guided Tour in Oilwell Drilling Vibration Modeling
,”
Annu. Rev. Control
,
42
, pp.
100
113
.10.1016/j.arcontrol.2016.09.002
11.
Mihajlovic
,
N.
,
Van Veggel
,
A.
,
Van de Wouw
,
N.
, and
Nijmeijer
,
H.
,
2004
, “
Analysis of Friction-Induced Limit Cycling in an Experimental Drill-String System
,”
ASME J. Dyn. Sys., Meas., Control
,
126
(
4
), pp.
709
720
.10.1115/1.1850535
12.
Navarro-López
,
E. M.
, and
Cortés
,
D.
,
2007
, “
Avoiding Harmful Oscillations in a Drillstring Through Dynamical Analysis
,”
J. Sound Vib.
,
307
(
1–2
), pp.
152
171
.10.1016/j.jsv.2007.06.037
13.
Fu
,
M.
,
Zhang
,
P.
,
Li
,
J.
, and
Wu
,
Y.
,
2019
, “
Observer and Reference Governor Based Control Strategy to Suppress Stick-Slip Vibrations in Oil Well Drill-String
,”
J. Sound Vib.
,
457
, pp.
37
50
.10.1016/j.jsv.2019.05.050
14.
Serrarens
,
A.
,
Van De Molengraft
,
M.
,
Kok
,
J.
, and
Van Den Steen
,
L.
,
1998
, “
H/Sub/Spl Infin//Control for Suppressing Stick-Slip in Oil Well Drillstrings
,”
IEEE Contr. Syst. Mag.
,
18
(
2
), pp.
19
30
.10.1109/37.664652
15.
Navarro-López
,
E. M.
, and
Cortés
,
D.
,
2007
, “
Sliding-Mode Control of a Multi-Dof Oilwell Drillstring With Stick-Slip Oscillations
,”
American Control Conference
,
IEEE
, New York, July 11–13, pp.
3837
3842
.https://www.research.manchester.ac.uk/portal/files/32799515/FULL_TEXT.PDF
16.
Monteiro
,
H. L.
, and
Trindade
,
M. A.
,
2017
, “
Performance Analysis of Proportional-Integral Feedback Control for the Reduction of Stick-Slip-Induced Torsional Vibrations in Oil Well Drillstrings
,”
J. Sound Vib.
,
398
, pp.
28
38
.10.1016/j.jsv.2017.03.013
17.
Liu
,
Y.
,
2015
, “
Suppressing Stick-Slip Oscillations in Underactuated Multibody Drill-Strings With Parametric Uncertainties Using Sliding-Mode Control
,”
IET Control Theory A
,
9
(
1
), pp.
91
102
.10.1049/iet-cta.2014.0329
18.
Monteiro
,
V.
,
Sousa
,
T. J.
,
Afonso
,
J. A.
, and
Afonso
,
J. L.
,
2018
, “
Innovative Off-Board EV Home Charging Station as a Smart Home Enabler: Present and Proposed Perspectives
,”
IEEE 16th International Conference on Industrial Informatics
,
IEEE
, Porto, Portugal, July 18–20, pp.
966
971
.10.1109/INDIN.2018.8471968
19.
Puebla
,
H.
, and
Alvarez-Ramirez
,
J.
,
2008
, “
Suppression of Stick-Slip in Drillstrings: A Control Approach Based on Modeling Error Compensation
,”
J. Sound Vib.
,
310
(
4–5
), pp.
881
901
.10.1016/j.jsv.2007.08.020
20.
Lin
,
W.
,
Chávez
,
J. P.
,
Liu
,
Y.
,
Yang
,
Y.
, and
Kuang
,
Y.
,
2020
, “
Stick-Slip Suppression and Speed Tuning for a Drill-String System Via Proportional-Derivative Control
,”
Appl. Math. Model.
,
82
, pp.
487
502
.10.1016/j.apm.2020.01.055
21.
Ibrahim Basturk
,
H.
,
2017
, “
Observer-Based Boundary Control Design for the Suppression of Stick–Slip Oscillations in Drilling Systems With Only Surface Measurements
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
10
), p. 104501.10.1115/1.4036549
22.
Real
,
F. F.
,
Batou
,
A.
,
Ritto
,
T. G.
, and
Desceliers
,
C.
,
2019
, “
Stochastic Modeling for Hysteretic Bit–Rock Interaction of a Drill String Under Torsional Vibrations
,”
J. Vib. Control
,
25
(
10
), pp.
1663
1672
.10.1177/1077546319828245
23.
Asghar Jafari
,
A.
,
Kazemi
,
R.
, and
Faraji Mahyari
,
M.
,
2012
, “
The Effects of Drilling Mud and Weight Bit on Stability and Vibration of a Drill String
,”
ASME J. Vib. Acoust.
,
134
(
1
), p. 011014.10.1115/1.4005033
24.
Ghasemi
,
M.
, and
Song
,
X.
,
2018
, “
Trajectory Tracking and Rate of Penetration Control of Downhole Vertical Drilling System
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
9
), p. 091003.10.1115/1.4039365
25.
Ke
,
C.
, and
Song
,
X.
,
2019
, “
Drilling Control System Using an Equivalent Input Disturbance-Based Control With a Neutral-Type Axial-Torsional Coupled Dynamics Model
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
12
), p. 121013.10.1115/1.4044617
26.
Abdulgalil
,
F.
, and
Siguerdidjane
,
H.
,
2005
, “
Backstepping Design for Controlling Rotary Drilling System
,”
Proceedings of IEEE Conference on Control Applications
,
IEEE
, Toronto, ON, Canada, Aug. 28–31, pp.
120
124
.10.1109/CCA.2005.1507111
27.
Bu
,
C.
,
Li
,
X.
,
Sun
,
L.
, and
Xia
,
B.
,
2016
, “
Arithmetic Solution for the Axial Vibration of Drill String Coupling With a Down-the-Hole Hammer in Rock Drilling
,”
J. Vib. Control
,
22
(
13
), pp.
3090
3101
.10.1177/1077546314560041
28.
Utkin
,
V. I.
,
1993
, “
Sliding Mode Control Design Principles and Applications to Electric Drives
,”
IEEE Trans. Ind. Elect.
,
40
(
1
), pp.
23
36
.10.1109/41.184818
29.
Utkin
,
V.
,
2016
, “
Discussion Aspects of High-Order Sliding Mode Control
,”
IEEE Trans. Autom. Control
,
61
(
3
), pp.
829
833
.10.1109/TAC.2015.2450571
30.
Borlaug
,
I.-L. G.
,
Pettersen
,
K. Y.
, and
Gravdahl
,
J. T.
,
2019
, “
Tracking Control of an Articulated Intervention AUV in 6DOF Using the Generalized Super-Twisting Algorithm
,”
American Control Conference (ACC)
, Philadelphia, PA, July 10–12, pp.
5705
5712
.https://ntnuopen.ntnu.no/ntnuxmlui/bitstream/handle/11250/2620326/ACC19_0166_FI.pdf?sequence=1
31.
Yan
,
Y.
,
Yu
,
S.
, and
Yu
,
X.
,
2021
, “
Euler's Discretization Effect on a Sliding Mode Control System With Super-Twisting Algorithm
,”
IEEE Trans. Autom. Control
,
66
(
6
), pp.
2817
2824
.10.1109/TAC.2020.3010493
32.
Biricik
,
S.
,
Komurcugil
,
H.
,
Ahmed
,
H.
, and
Babaei
,
E.
,
2020
, “
Super Twisting Sliding Mode Control of DVR With Frequency-Adaptive Brockett Oscillator
,”
IEEE Transactions on Industrial Electronics
,
68
(
11
), pp.
10730
10739
.10.1109/TIE.2020.3038089
33.
Levant
,
A.
,
2003
, “
Higher-Order Sliding Modes, Differentiation and Output-Feedback Control
,”
Int. J. Control
,
76
(
9–10
), pp.
924
941
.10.1080/0020717031000099029
34.
Dehkordi
,
N. M.
,
Sadati
,
N.
, and
Hamzeh
,
M.
,
2017
, “
A Robust Backstepping High-Order Sliding Mode Control Strategy for Grid-Connected dg Units With Harmonic/Interharmonic Current Compensation Capability
,”
IEEE Trans. Sustain. Energy
,
8
(
2
), pp.
561
572
.10.1109/TSTE.2016.2611383
35.
Djemaï
,
M.
,
Busawon
,
K.
,
Benmansour
,
K.
, and
Marouf
,
A.
,
2011
, “
High-Order Sliding Mode Control of a dc Motor Drive Via a Switched Controlled Multi-Cellular Converter
,”
Int. J. Syst. Sci.
,
42
(
11
), pp.
1869
1882
.10.1080/00207721.2010.545492
36.
Perruquetti
,
W.
, and
Barbot
,
J.-P.
,
2002
,
Sliding Mode Control in Engineering
,
CRC Press
, Oxfordshire, UK.
37.
Alsofyani
,
I.
, and
Lee
,
K. B.
,
2020
, “
Enhanced Performance of Constant Frequency Torque Controller-Based Direct Torque Control of Induction Machines With Increased Torque-Loop Bandwidth
,”
IEEE Trans. Ind. Electron.
,
67
(
12
), pp.
10168
10179
.10.1109/TIE.2019.2959477
38.
Patil
,
P. A.
, and
Teodoriu
,
C.
,
2013
, “
A Comparative Review of Modelling and Controlling Torsional Vibrations and Experimentation Using Laboratory Setups
,”
J. Pet. Sci. Eng.
,
112
, pp.
227
238
.10.1016/j.petrol.2013.11.008
39.
Wang
,
Y.-L.
,
Wang
,
Y.-F.
, and
Zhang
,
H.-K.
,
2019
, “
Robust Adaptive Control of Pemfc Air Supply System Based on Radical Basis Function Neural Network
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
6
), p. 064503.10.1115/1.4042674
40.
Bruni
,
S.
,
Bucca
,
G.
,
Collina
,
A.
, and
Facchinetti
,
A.
,
2012
, “
Numerical and Hardware-in-the-Loop Tools for the Design of Very High Speed Pantograph-Catenary Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
4
), p. 041013.10.1115/1.4006834
41.
Sun
,
X.
,
Diao
,
K.
,
Lei
,
G.
,
Guo
,
Y.
, and
Zhu
,
J.
,
2020
, “
Real-Time HIL Emulation for a Segmented-Rotor Switched Reluctance Motor Using a New Magnetic Equivalent Circuit
,”
IEEE Trans. Power Electron.
,
35
(
4
), pp.
3841
3849
.10.1109/TPEL.2019.2933664
42.
Ma
,
F.
,
Wang
,
J.
,
Zhu
,
S.
,
Gelbal
,
S. Y.
,
Yang
,
Y.
,
Aksun-Guvenc
,
B.
, and
Guvenc
,
L.
,
2020
, “
Distributed Control of Cooperative Vehicular Platoon With Nonideal Communication Condition
,”
IEEE Trans. Veh. Technol.
,
69
(
8
), pp.
8207
8220
.10.1109/TVT.2020.2997767
43.
Jia
,
Y.
, and
Rajashekara
,
K.
,
2017
, “
An Induction Generator-Based AC/DC Hybrid Electric Power Generation System for More Electric Aircraft
,”
IEEE Trans. Ind. Appl.
,
53
(
3
), pp.
2485
2494
.10.1109/TIA.2017.2650862
You do not currently have access to this content.