Abstract

A systematic approach is developed for determining a control input for the point-to-point control of an overhead crane that exhibits temporal variation of rope length in addition to damping and nonlinearity, without inducing residual vibration. Complete suppression of the residual vibration is achieved by eliminating the natural frequency component of the cargo from the apparent external force, which is defined to include the effects of damping, nonlinearity, and parameter variation. Furthermore, an effective technique previously proposed by the authors for improving robustness to the modeling error of the natural frequency is extended. Numerical simulation results show that, even when cargo is hoisted up or down during operation, the proposed method realizes accurate positioning of the cargo without inducing residual vibration and sufficiently improves robustness. To the best of our knowledge, this is the first frequency-domain robust open-loop control strategy that ensures a theoretical zero amplitude for residual vibration in the absence of modeling error in nonlinear crane hoisting operation. The developed method is not only a contribution to the realization of low-cost and efficient crane hoisting operation, but is also applicable to the control of other nonlinear damped systems that include time-varying parameters.

References

1.
Ramli
,
L.
,
Mohamed
,
Z.
,
Abdullahi
,
A. M.
,
Jaafar
,
H. I.
, and
Lazim
,
I. M.
,
2017
, “
Control Strategies for Crane Systems: A Comprehensive Review
,”
Mech. Syst. Signal Process.
,
95
, pp.
1
23
.10.1016/j.ymssp.2017.03.015
2.
Abdel-Rahman
,
E. M.
,
Nayfeh
,
A. H.
, and
Masoud
,
Z. N.
,
2003
, “
Dynamics and Control of Cranes: A Review
,”
J. Vib. Control
,
9
(
7
), pp.
863
908
.10.1177/1077546303009007007
3.
Sorensen
,
K. L.
,
Singhose
,
W.
, and
Dickerson
,
S.
,
2007
, “
A Controller Enabling Precise Positioning and Sway Reduction in Bridge and Gantry Cranes
,”
Control Eng. Pract.
,
15
(
7
), pp.
825
837
.10.1016/j.conengprac.2006.03.005
4.
Mar
,
R.
,
Goyal
,
A.
,
Nguyen
,
V.
,
Yang
,
T.
, and
Singhose
,
W.
,
2017
, “
Combined Input Shaping and Feedback Control for Double-Pendulum Systems
,”
Mech. Syst. Signal Process.
,
85
, pp.
267
277
.10.1016/j.ymssp.2016.08.012
5.
Smoczek
,
J.
, and
Szpytko
,
J.
,
2014
, “
Evolutionary Algorithm-Based Design of a Fuzzy TBF Predictive Model and TSK Fuzzy Anti-Sway Crane Control System
,”
Eng. Appl. Artif. Intell.
,
28
, pp.
190
200
.10.1016/j.engappai.2013.07.013
6.
Maghsoudi
,
M. J.
,
Mohamed
,
Z.
,
Husain
,
A. R.
, and
Tokhi
,
M. O.
,
2016
, “
An Optimal Performance Control Scheme for a 3D Crane
,”
Mech. Syst. Signal Process.
,
66–67
, pp.
756
768
.10.1016/j.ymssp.2015.05.020
7.
Chen
,
H.
,
Fang
,
Y.
, and
Sun
,
N.
,
2019
, “
An Adaptive Tracking Control Method With Swing Suppression for 4-DOF Tower Crane Systems
,”
Mech. Syst. Signal Process.
,
123
, pp.
426
442
.10.1016/j.ymssp.2018.11.018
8.
Sun
,
N.
, and
Fang
,
Y.
,
2015
, “
Adaptive Nonlinear Crane Control With Load Hoisting/Lowering and Unknown Parameters: Design and Experiments
,”
IEEE/ASME Trans. Mechatronics
,
20
(
5
), pp.
2107
2119
.10.1109/TMECH.2014.2364308
9.
Cheng
,
C.
, and
Chen
,
C.
,
1996
, “
Controller Design for an Overhead Crane System With Uncertainty
,”
Control Eng. Pract.
,
4
(
5
), pp.
645
653
.10.1016/0967-0661(96)00046-9
10.
Masoud
,
Z. N.
, and
Nayfeh
,
A. H.
,
2003
, “
Sway Reduction on Container Cranes Using Delayed Feedback Controller
,”
Nonlinear Dyn.
,
34
(
3–4
), pp.
347
358
.10.1023/B:NODY.0000013512.43841.55
11.
Nayfeh
,
N. A.
, and
Baumann
,
W. T.
,
2008
, “
Nonlinear Analysis of Time-Delay Position Feedback Control of Container Cranes
,”
Nonlinear Dyn.
,
53
(
1–2
), pp.
75
88
.10.1007/s11071-007-9297-z
12.
Lin
,
T. C.
,
Lin
,
Y. C.
,
Zirkohi
,
M. M.
, and
Huang
,
H. C.
,
2016
, “
Direct Adaptive Fuzzy Moving Sliding Mode Proportional Integral Tracking Control of a Three-Dimensional Overhead Crane
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
10
), p.
101001
.10.1115/1.4033414
13.
Vazquez
,
C.
,
Fridman
,
L.
,
Collado
,
J.
, and
Castillo
,
I.
,
2015
, “
Second-Order Sliding Mode Control of a Perturbed-Crane
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
8
), p.
081010
.10.1115/1.4030253
14.
Tuan
,
L. A.
,
Moon
,
S. C.
,
Lee
,
W. G.
, and
Lee
,
S. G.
,
2013
, “
Adaptive Sliding Mode Control of Overhead Cranes With Varying Cable Length
,”
J. Mech. Sci. Technol.
,
27
(
3
), pp.
885
893
.10.1007/s12206-013-0204-x
15.
Lee
,
H. H.
,
Liang
,
Y.
, and
Segura
,
D.
,
2006
, “
A Sliding-Mode Antiswing Trajectory Control for Overhead Cranes With High-Speed Load Hoisting
,”
ASME J. Dyn. Syst., Meas., Control
,
128
(
4
), pp.
842
845
.10.1115/1.2364010
16.
Fujioka
,
D.
, and
Singhose
,
W.
,
2018
, “
Optimized Input-Shaped Model Reference Control on Double-Pendulum System
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
10
), p.
101004
.10.1115/1.4039786
17.
Sun
,
N.
,
Fang
,
Y.
, and
Chen
,
H.
,
2016
, “
A Continuous Robust Antiswing Tracking Control Scheme for Underactuated Crane Systems With Experimental Verification
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
4
), p.
041002
.10.1115/1.4032460
18.
He
,
W.
,
Wang
,
T.
,
He
,
X.
,
Yang
,
L. J.
, and
Kaynak
,
O.
,
2020
, “
Dynamical Modeling and Boundary Vibration Control of a Rigid-Flexible Wing System
,”
IEEE/ASME Trans. Mechatronics
,
25
(
6
), pp.
2711
2721
.10.1109/TMECH.2020.2987963
19.
Kawai
,
H.
,
Kim
,
Y. B.
, and
Choi
,
Y. W.
,
2009
, “
Anti-Sway System With Image Sensor for Container Cranes
,”
J. Mech. Sci. Technol.
,
23
(
10
), pp.
2757
2765
.10.1007/s12206-009-0625-8
20.
Kreuzer
,
E.
,
Pick
,
M. A.
,
Rapp
,
C.
, and
Theis
,
J.
,
2014
, “
Unscented Kalman Filter for Real-Time Load Swing Estimation of Container Cranes Using Rope Forces
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
4
), p.
041009
.10.1115/1.4026602
21.
Strip
,
D. R.
,
1989
, “
Swing-Free Transport of Suspended Objects: A General Treatment
,”
IEEE Trans. Rob. Autom.
,
5
(
2
), pp.
234
236
.10.1109/70.88044
22.
Singer
,
N. C.
, and
Seering
,
W. P.
,
1990
, “
Preshaping Command Inputs to Reduce System Vibration
,”
ASME J. Dyn. Syst., Meas., Control
,
112
(
1
), pp.
76
82
.10.1115/1.2894142
23.
Singhose
,
W.
,
Seering
,
W.
, and
Singer
,
N.
,
1994
, “
Residual Vibration Reduction Using Vector Diagrams to Generate Shaped Inputs
,”
ASME J. Mech. Des.
,
116
(
2
), pp.
654
659
.10.1115/1.2919428
24.
Vaughan
,
J.
,
Yano
,
A.
, and
Singhose
,
W.
,
2009
, “
Robust Negative Input Shapers for Vibration Suppression
,”
ASME J. Dyn. Syst., Meas., Control
,
131
(
3
), p.
031014
.10.1115/1.3072155
25.
Singh
,
T.
,
2012
, “
Pole-Zero Zero-Pole Canceling Input Shapers
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
1
), p.
011015
.10.1115/1.4004576
26.
Bhat
,
S. P.
, and
Miu
,
D. K.
,
1990
, “
Precise Point-to-Point Positioning Control of Flexible Structures
,”
ASME J. Dyn. Syst., Meas., Control
,
112
(
4
), pp.
667
674
.10.1115/1.2896193
27.
Xie
,
X.
,
Huang
,
J.
, and
Liang
,
Z.
,
2013
, “
Vibration Reduction for Flexible Systems by Command Smoothing
,”
Mech. Syst. Signal Process.
,
39
(
1–2
), pp.
461
470
.10.1016/j.ymssp.2013.02.021
28.
Masoud
,
Z. N.
, and
Alhazza
,
K. A.
,
2014
, “
Frequency-Modulation Input Shaping Control of Double-Pendulum Overhead Cranes
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
2
), p.
021005
.10.1115/1.4025796
29.
Piazzi
,
A.
, and
Visioli
,
A.
,
2000
, “
Minimum-Time System-Inversion-Based Motion Planning for Residual Vibration Reduction
,”
IEEE/ASME Trans. Mechatronics
,
5
(
1
), pp.
12
22
.10.1109/3516.828585
30.
Padula
,
F.
,
Visioli
,
A.
,
Facchinetti
,
D.
, and
Saleri
,
A.
,
2015
, “
A Dynamic Inversion Approach for Oscillation-Free Control of Overhead Cranes
,”
Proceedings IEEE International Conference on Emerging Technologies and Factory Automation
, Luxembourg, Sept. 8–11, pp.
1
6
.10.1109/ETFA.2015.7301445
31.
Giacomelli
,
M.
,
Padula
,
F.
,
Simoni
,
L.
, and
Visioli
,
A.
,
2018
, “
Simplified Input-Output Inversion Control of a Double Pendulum Overhead Crane for Residual Oscillations Reduction
,”
Mechatronics
,
56
, pp.
37
47
.10.1016/j.mechatronics.2018.10.002
32.
Daqaq
,
M. F.
, and
Masoud
,
Z. N.
,
2006
, “
Nonlinear Input-Shaping Controller for Quay-Side Container Cranes
,”
Nonlinear Dyn.
,
45
(
1–2
), pp.
149
170
.10.1007/s11071-006-2425-3
33.
Wilbanks
,
J. J.
,
Adams
,
C. J.
, and
Leamy
,
M. J.
,
2018
, “
Two-Scale Command Shaping for Feedforward Control of Nonlinear Systems
,”
Nonlinear Dyn.
,
92
(
3
), pp.
885
903
.10.1007/s11071-018-4098-0
34.
Zameroski
,
D.
,
Starr
,
G.
,
Wood
,
J.
, and
Lumia
,
R.
,
2008
, “
Rapid Swing-Free Transport of Nonlinear Payloads Using Dynamic Programming
,”
ASME J. Dyn. Syst., Meas., Control
,
130
(
4
), p.
041001
.10.1115/1.2936384
35.
Gorinevsky
,
D.
, and
Vukovich
,
G.
,
1998
, “
Nonlinear Input Shaping Control of Flexible Spacecraft Reorientation Maneuver
,”
J. Guid., Control, Dyn.
,
21
(
2
), pp.
264
270
.10.2514/2.4252
36.
Kurihara
,
K.
,
Kondou
,
T.
,
Mori
,
H.
,
Matsuzaki
,
K.
, and
Sowa
,
N.
,
2018
, “
Vibration Control of an Overhead Crane by Elimination of the Natural Frequency Component (Application to the System With Uncertainty in Natural Frequency)
,”
Trans. JSME
,
84
(
868
), p.
18-00274
(in Japanese).10.1299/transjsme.18-00274
37.
Singhose
,
W.
,
Porter
,
L.
,
Kenison
,
M.
, and
Kriikku
,
E.
,
2000
, “
Effects of Hoisting on the Input Shaping Control of Gantry Cranes
,”
Control Eng. Pract.
,
8
(
10
), pp.
1159
1165
.10.1016/S0967-0661(00)00054-X
38.
Masoud
,
Z. N.
, and
Daqaq
,
M. F.
,
2006
, “
A Graphical Approach to Input-Shaping Control Design for Container Cranes With Hoist
,”
IEEE Trans. Control Syst. Technol.
,
14
(
6
), pp.
1070
1077
.10.1109/TCST.2006.883194
39.
Alghanim
,
K. A.
,
Alhazza
,
K. A.
, and
Masoud
,
Z. N.
,
2015
, “
Discrete-Time Command Profile for Simultaneous Travel and Hoist Maneuvers of Overhead Cranes
,”
J. Sound Vib.
,
345
, pp.
47
57
.10.1016/j.jsv.2015.01.042
40.
Alghanim
,
K. A.
,
Majeed
,
M. A.
, and
Alhazza
,
K. A.
,
2018
, “
Adjustable-Smooth Polynomial Command-Shaping Control With Linear Hoisting
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061013
.10.1115/1.4040236
41.
Lee
,
H. H.
,
2004
, “
A New Motion-Planning Scheme for Overhead Cranes With High-Speed Hoisting
,”
ASME J. Dyn. Syst., Meas., Control
,
126
(
2
), pp.
359
364
.10.1115/1.1767855
42.
Ramli
,
L.
,
Mohamed
,
Z.
, and
Jaafar
,
H. I.
,
2018
, “
A Neural Network-Based Input Shaping for Swing Suppression of an Overhead Crane Under Payload Hoisting and Mass Variations
,”
Mech. Syst. Signal Process.
,
107
, pp.
484
501
.10.1016/j.ymssp.2018.01.029
43.
Maghsoudi
,
M. J.
,
Ramli
,
L.
,
Sudin
,
S.
,
Mohamed
,
Z.
,
Husain
,
A. R.
, and
Wahid
,
H.
,
2019
, “
Improved Unity Magnitude Input Shaping Scheme for Sway Control of an Underactuated 3D Overhead Crane With Hoisting
,”
Mech. Syst. Signal Process.
,
123
, pp.
466
482
.10.1016/j.ymssp.2018.12.056
44.
Speyer
,
J. L.
, and
Jacobson
,
D. H.
,
2010
,
Primer on Optimal Control Theory
,
Siam
,
Philadelphia
, PA, pp.
188
192
.10.1137/1.9780898718560
45.
Antia
,
H. M.
,
2002
,
Numerical Methods for Scientists and Engineers
, 2nd ed.,
Birkhäuser Verlag
,
Basel, Switzerland
, pp.
598
613
;
620
623
. https://cds.cern.ch/record/644736/files/3764367156_TOC.pdf
You do not currently have access to this content.