Abstract

There is growing interest in the use of the filtered basis functions (FBF) approach to track linear systems, especially nonminimum phase (NMP) plants, because of its distinct advantages compared to other tracking control methods in the literature. The FBF approach expresses the control input to the plant as a linear combination of basis functions with unknown coefficients. The basis functions are forward filtered through the plant dynamics, and the coefficients are selected such that tracking error is minimized. Similar to other feedforward control methods, the tracking accuracy of the FBF approach deteriorates in the presence of uncertainties. However, unlike other methods, the FBF approach presents flexibility in terms of the choice of the basis functions, which can be used to improve its accuracy. This paper analyzes the effect of the choice of the basis functions on the tracking accuracy of FBF, in the presence of uncertainties, using the Frobenius norm of the lifted system representation (LSR) of FBF's error dynamics. Based on the analysis, a methodology for optimal selection of basis functions to maximize robustness is proposed, together with an approach to avoid large control effort when it is applied to NMP systems. The basis functions resulting from this process are called robust basis functions. Applied experimentally to a desktop three-dimensional (3D) printer with uncertain NMP dynamics, up to 48% improvement in tracking accuracy is achieved using the proposed robust basis functions compared to B-splines, while utilizing much less control effort.

References

1.
Bruijnen
,
D.
, and
van Dijk
,
N.
,
2012
, “
Combined Input Shaping and Feedforward Control for Flexible Motion Systems
,”
Proceedings of the 2012 American Control Conference
, Montreal, QC, Canada, June 27–29, pp.
2473
2478
.10.1109/ACC.2012.6315055
2.
Tomizuka
,
M.
,
1987
, “
Zero Phase Error Tracking Algorithm for Digital Control
,”
ASME J. Dyn. Syst., Meas., Control
,
109
(
1
), pp.
65
68
.10.1115/1.3143822
3.
Faanes
,
A.
, and
Skogestad
,
S.
,
2004
, “
Feedforward Control Under the Presence of Uncertainty
,”
Eur. J. Control
,
10
(
1
), pp.
30
46
.10.3166/ejc.10.30-46
4.
Astrom
,
K.
, and
Wittenmark
,
B.
,
1984
,
Computer Controlled Systems: Theory and Design
,
Prentice Hall
,
Upper Saddle River, NJ
.https://www.bibsonomy.org/bibtex/17add6a32e52afc08ecd1f8f573843ba1/butz
5.
Miu
,
D. K.
,
2012
,
Mechatronics: Electromechanics and Contromechanics
,
Springer Science & Business Media
,
New York
.
6.
Clayton
,
G. M.
,
Tien
,
S.
,
Leang
,
K. K.
,
Zou
,
Q.
, and
Devasia
,
S.
,
2009
, “
A Review of Feedforward Control Approaches in Nanopositioning for High-Speed SPM
,”
ASME J. Dyn. Syst., Meas., Control
,
131
(
6
), p.
061101
.10.1115/1.4000158
7.
Rigney
,
B. P.
,
Pao
,
L. Y.
, and
Lawrence
,
D. A.
,
2009
, “
Nonminimum Phase Dynamic Inversion for Settle Time Applications
,”
IEEE Trans. Control Syst. Technol.
,
17
(
5
), pp.
989
1005
.10.1109/TCST.2008.2002035
8.
van Zundert
,
J.
, and
Oomen
,
T.
,
2018
, “
On Inversion-Based Approaches for Feedforward and ILC
,”
Mechatronics
,
50
, pp.
282
291
.10.1016/j.mechatronics.2017.09.010
9.
Duan
,
M.
,
Ramani
,
K. S.
, and
Okwudire
,
C. E.
,
2015
, “
Tracking Control of Non-Minimum Phase Systems Using Filtered Basis Functions: A NURBS-Based Approach
,”
ASME Paper No. DSCC2015-9859
.10.1115/DSCC2015-9859
10.
Ramani
,
K. S.
,
Duan
,
M.
,
Okwudire
,
C. E.
, and
Ulsoy
,
A. G.
,
2017
, “
Tracking Control of Linear Time-Invariant Nonminimum Phase Systems Using Filtered Basis Functions
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
1
), p.
011001
.10.1115/1.4034367
11.
Kasemsinsup
,
Y.
,
Romagnoli
,
R.
,
Heertjes
,
M.
,
Weiland
,
S.
, and
Butler
,
H.
,
2017
, “
Reference-Tracking Feedforward Control Design for Linear Dynamical Systems Through Signal Decomposition
,”
American Control Conference (ACC)
,
Seattle, WA
, May 24–26, pp.
2387
2392
.10.23919/ACC.2017.7963310
12.
Duan
,
M.
,
Yoon
,
D.
, and
Okwudire
,
C. E.
,
2018
, “
A Limited-Preview Filtered B-Spline Approach to Tracking Control—With Application to Vibration-Induced Error Compensation of a Commercial 3D Printer
,”
Mechatronics
,
56
, pp.
287
296
.10.1016/j.mechatronics.2017.09.002
13.
Romagnoli
,
R.
, and
Garone
,
E.
,
2019
, “
A General Framework for Approximated Model Stable Inversion
,”
Automatica
,
101
, pp.
182
189
.10.1016/j.automatica.2018.11.044
14.
Frueh
,
J. A.
, and
Phan
,
M. Q.
,
2000
, “
Linear Quadratic Optimal Learning Control (LQL)
,”
Int. J. Control
,
73
(
10
), pp.
832
839
.10.1080/002071700405815
15.
Ramani
,
K. S.
,
Duan
,
M.
,
Okwudire
,
C. E.
, and
Ulsoy
,
A. G.
,
2018
, “
A Lifted Domain-Based Metric for Performance Evaluation of LTI and LTV Discrete-Time Tracking Controllers
,”
2018 International Symposium on Flexible Automation
, Kanazawa, Japan, pp. 248–255.10.11509/isfa.2018.248
16.
Zhao
,
Y.
, and
Jayasuriya
,
S.
,
1995
, “
Feedforward Controllers and Tracking Accuracy in the Presence of Plant Uncertainties
,”
ASME J. Dyn. Syst., Meas., Control
,
117
(
4
), pp.
490
495
.10.1115/1.2801105
17.
Tsao
,
T.-C.
, and
Tomizuka
,
M.
,
1987
, “
Adaptive Zero Phase Error Tracking Algorithm for Digital Control
,”
ASME J. Dyn. Syst., Meas., Control
,
109
(
4
), pp.
349
354
.10.1115/1.3143866
18.
Adam
,
E. J.
, and
Marchetti
,
J. L.
,
2004
, “
Designing and Tuning Robust Feedforward Controllers
,”
Comput. Chem. Eng.
,
28
(
9
), pp.
1899
1911
.10.1016/j.compchemeng.2004.03.005
19.
Devasia
,
S.
,
2002
, “
Should Model-Based Inverse Inputs Be Used as Feedforward Under Plant Uncertainty?
,”
IEEE Trans. Autom. Control
,
47
(
11
), pp.
1865
1871
.10.1109/TAC.2002.804478
20.
Wu
,
Y.
, and
Zou
,
Q.
,
2009
, “
Robust Inversion-Based 2-DOF Control Design for Output Tracking: Piezoelectric-Actuator Example
,”
IEEE Trans. Control Syst. Technol.
,
17
(
5
), pp.
1069
1082
.
21.
Lunenburg
,
J. J. M.
,
2010
, “
Inversion-Based MIMO Feedforward Design Beyond Rigid Body Systems
,”
Eindhoven University of Technology
,
Eindhoven, The Netherlands
, Technical Report No. 2010.061.
22.
Pao
,
L. Y.
,
Butterworth
,
J. A.
, and
Abramovitch
,
D. Y.
,
2007
, “
Combined Feedforward/Feedback Control of Atomic Force Microscopes
,”
2007 American Control Conference
,
New York
, July 11–13, pp.
3509
3515
.
23.
Aphale
,
S. S.
,
Devasia
,
S.
, and
Moheimani
,
S. R.
,
2008
, “
High-Bandwidth Control of a Piezoelectric Nanopositioning Stage in the Presence of Plant Uncertainties
,”
Nanotechnology
,
19
(
12
), p.
125503
.10.1088/0957-4484/19/12/125503
24.
Wu
,
Y.
, and
Zou
,
Q.
,
2009
, “
An Iterative-Based Feedforward-Feedback Control Approach to High-Speed Atomic Force Microscope Imaging
,”
ASME J. Dyn. Syst., Meas., Control
,
131
(
6
), p.
061105
.10.1115/1.4000137
25.
Wang
,
H.
,
Kim
,
K.
, and
Zou
,
Q.
,
2013
, “
B-Spline-Decomposition-Based Output Tracking With Preview for Nonminimum-Phase Linear Systems
,”
Automatica
,
49
(
5
), pp.
1295
1303
.10.1016/j.automatica.2013.01.044
26.
de Rozario
,
R.
,
Fleming
,
A. J.
, and
Oomen
,
T.
,
2016
, “
Iterative Control for Periodic Tasks With Robustness Considerations, Applied to a Nanopositioning Stage
,”
IFAC-PapersOnLine
,
49
(
21
), pp.
623
628
.10.1016/j.ifacol.2016.10.670
27.
Tayebi
,
A.
,
Abdul
,
S.
,
Zaremba
,
M.
, and
Ye
,
Y.
,
2008
, “
Robust Iterative Learning Control Design: Application to a Robot Manipulator
,”
IEEE/ASME Trans. Mechatronics
,
13
(
5
), pp.
608
613
.10.1109/TMECH.2008.2004627
28.
Ye
,
Y.
, and
Wang
,
D.
,
2005
, “
DCT Basis Function Learning Control
,”
IEEE/ASME Trans. Mechatronics
,
10
(
4
), pp.
449
454
.10.1109/TMECH.2005.852484
29.
Ramani
,
K. S.
, and
Okwudire
,
C. E.
,
2016
, “
Regularized Filtered Basis Functions Approach for Accurate Tracking of Discrete-Time Linear Time Invariant Systems With Bounded Random Uncertainties
,”
ASME Paper No. DSCC2016-9885.
30.
Ramani
,
K. S.
, and
Okwudire
,
C. E.
,
2018
, “
Robust Filtered Basis Functions Approach for Feedforward Tracking Control
,”
ASME Paper No. DSCC2018-9196
.10.1115/DSCC2018-9196
31.
Ramani
,
K. S.
,
Edoimioya
,
N.
, and
Okwudire
,
C. E.
,
2020
, “
A Robust Filtered Basis Functions Approach for Feedforward Tracking Control—With Application to a Vibration-Prone 3D Printer
,”
IEEE/ASME Trans. Mechatronics
,
25
(
5
), pp.
2556
2564
.10.1109/TMECH.2020.2983680
32.
Ramani
,
K. S.
,
Duan
,
M.
,
Okwudire
,
C. E.
, and
Ulsoy
,
A. G.
,
2019
, “
Optimal Selection of Basis Functions for Minimum-Effort Tracking Control of Nonminimum Phase Systems Using Filtered Basis Functions
,”
ASME J. Dyn. Syst., Meas., Control
,
141
(
11
), p.
111009
.10.1115/1.4044355
33.
Ramani
,
K. S.
, and
Okwudire
,
C. E.
,
2020
, “
Optimal Selection of Basis Functions for Robust Tracking Control of Linear Systems Using Filtered Basis Functions
,”
American Control Conference (ACC)
,
Denver, CO
, pp.
1539
1544
.10.23919/ACC45564.2020.9147557
34.
Gross
,
E.
,
Tomizuka
,
M.
, and
Messner
,
W.
,
1994
, “
Cancellation of Discrete Time Unstable Zeros by Feedforward Control
,”
ASME J. Dyn. Syst., Meas., Control
,
116
(
1
), pp.
33
38
.10.1115/1.2900678
35.
Deb
,
A.
,
Sarkar
,
G.
, and
Sen
,
S. K.
,
1994
, “
Block Pulse Functions, the Most Fundamental of All Piecewise Constant Basis Functions
,”
Int. J. Syst. Sci.
,
25
(
2
), pp.
351
363
.10.1080/00207729408928964
36.
Piegl
,
L.
, and
Tiller
,
W.
,
1997
,
The NURBS Book
,
Springer
,
New York
.https://link.springer.com/book/10.1007%2F978-3-642-59223-2
37.
Yoon
,
D.
,
Ge
,
X.
, and
Okwudire
,
C. E.
,
2019
, “
Optimal Inversion-Based Iterative Learning Control for Overactuated Systems
,”
IEEE Trans. Control Syst. Technol.
,
28
(
5
), pp.
1948
1955
.
38.
Ramani
,
K. S.
, and
Okwudire
,
C. E.
,
2020
, “
Two-Stage Robust Tracking Controller for Linear Systems With Known Uncertainty Using Filtered Basis Functions
,”
ASME Paper No. DSCC2020-3207
.10.1115/DSCC2020-3207
39.
Bristow
,
D. A.
,
Tharayil
,
M.
, and
Alleyne
,
A. G.
,
2006
, “
A Survey of Iterative Learning Control
,”
IEEE Control Syst. Mag.
,
26
(
3
), pp.
96
114
.10.1109/MCS.2006.1636313
You do not currently have access to this content.