Abstract

Autonomous plant alive status monitoring and corresponding localization of individual plant are two important tasks in precision agriculture. In this study, two new methods that are crucial to such robotic operations are proposed. First, a low cost and light scene invariant approach is proposed to differentiate green and yellow leaves using distinct color-ratio index ranges. Second, based on the relative pixel information of neighboring plants, an extended Kalman filter is used to determine plant positions. Such a differential style localization method is shown to be capable of achieving a similar centimeter level accuracy as light detection and ranging (LIDAR) or real-time kinematic-global positioning system (RTK-GPS) based approaches, but with a much lower upfront and maintenance cost. These two new methods are successfully validated in a nearby commercial field.

References

1.
Grand View Research
,
2017
, “
Precision Agriculture Market Analysis by Component (Hardware, Software & Services), by Technology Variable Rate Technology, Remote Sensing, Guidance Systems, by Application, by Region, and Segment Forecasts, 2014–2025
,” Grand View Research, San Francisco, CA, Report No. 4717549.
2.
Rouphael
,
Y.
,
Spíchal
,
L.
,
Panzarová
,
K.
,
Casa
,
R.
, and
Colla
,
G.
,
2018
, “
High-Throughput Plant Phenotyping for Developing Novel Biostimulants: From Lab to Field or From Field to Lab?
,”
Front. Plant. Sci.
,
9
, p.
1197
.10.3389/fpls.2018.01197
3.
Garcia-Ruiz
,
F.
,
Sankaran
,
S.
,
Maja
,
J. M.
,
Lee
,
W. S.
,
Rasmussen
,
J.
, and
Ehsani
,
R.
,
2013
, “
Comparison of Two Aerial Imaging Platforms for Identification of Huanglongbing-Infected Citrus Trees
,”
Comput. Electron. Agric.
,
91
, pp.
106
115
.10.1016/j.compag.2012.12.002
4.
Gonzalez
,
R. C.
, and
Woods
,
R. E.
,
2008
,
Digital Image Processing
,
Pearson Education
,
Upper Saddle River, NJ.
5.
Patil
,
J. K.
, and
Kumar
,
R.
,
2011
, “
Advances in Image Processing for Detection of Plant Diseases
,”
J. Adv. Bioinf. Appl. Res.
,
2
(
2
), pp.
135
141
.https://pdfs.semanticscholar.org/0a10/96ca51b4b8067865211b42c0bec4c9969f34.pdf
6.
Abbott
,
J. A.
,
1999
, “
Quality Measurement of Fruits and Vegetables
,”
Postharvest Biol. Technol.
,
15
(
3
), pp.
207
225
.10.1016/S0925-5214(98)00086-6
7.
Kulkarni
,
N.
,
2012
, “
Color Thresholding Method for Image Segmentation of Natural Images
,”
Int. J. Image, Graph., Signal Process.
,
1
, pp.
28
34
.10.5815/ijigsp.2012.01.04
8.
Yang
,
W.
,
Wang
,
S.
,
Zhao
,
X.
,
Zhang
,
J.
, and
Feng
,
J.
,
2015
, “
Greenness Identification Based on HSV Decision Tree
,”
Inf. Process. Agric.
,
2
(
3–4
), pp.
149
160
.10.1016/j.inpa.2015.07.003
9.
Borenstein
,
J.
,
Everett
,
H. R.
,
Feng
,
L.
, and
Wehe
,
D.
,
1997
, “
Mobile Robot Positioning: Sensors and Techniques
,”
J. Intell. Robot Syst.
,
14
(
4
), pp.
231
249
.10.1002/(SICI)1097-4563(199704)14:4<231::AID-ROB2>3.0.CO;2-R
10.
Herrero-Pérez
,
D.
,
Martinez-Barberá
,
H.
,
LeBlanc
,
K.
, and
Saffiotti
,
A.
,
2010
, “
Fuzzy Uncertainty Modeling for Grid Based Localization of Mobile Robots
,”
Int. J. Approx. Reason.
,
51
(
8
), pp.
912
932
.10.1016/j.ijar.2010.06.001
11.
Joerger
,
M.
, and
Pervan
,
B.
,
2009
, “
Measurement-Level Integration of Carrier-Phase GPS and Laser-Scanner for Outdoor Ground Vehicle Navigation
,”
ASME J. Dyn. Sys., Meas., Control
,
131
(
2
), p.
021004
10.1115/1.3072122
12.
Dawkins
,
J. J.
,
2017
, “
Relative Position Estimation Using Monocular Camera and Ultra-Wide Band Ranging
,”
ASME
Paper No. DSCC2017-5273
. 10.1115/DSCC2017-5273
13.
Garrido
,
M.
,
Perez-Ruiz
,
M.
,
Valero
,
C.
,
Gliever
,
C. J.
,
Hanson
,
B. D.
, and
Slaughter
,
D. C.
,
2014
, “
Active Optical Sensors for Tree Stem Detection and Classification in Nurseries
,”
Sensors
,
14
(
6
), pp.
10783
10803
.10.3390/s140610783
14.
Kong
,
X.
, and
Xu
,
Y.
,
2018
, “
Strawberry Plant Localization Via Relative Pixels in Sequential Images
,”
ASME
Paper No. DSCC2018-9034
.
15.
Smith
,
A. R.
,
1978
, “
Color Gamut Transform Pairs
,”
ACM SIGGRAPH Comput. Graph.
,
12
(
3
), pp.
12
19
.10.1145/965139.807361
16.
Hitam
,
M. S.
,
Awalludin
,
E. A.
,
Jawahir
,
H.
,
Wan Yussof
,
W. N.
, and
Bachok
,
Z.
,
2013
, “
Mixture Contrast Limited Adaptive Histogram Equalization for Underwater Image Enhancement
,”
International Conference on Computer Applications Technology
,
Sousse, Tunisia
,
Jan. 20–22
, pp.
1
5
.
17.
Martian Color Wheel
,
2014
, “
Martian 24 Hue Color Wheel
,” Martian Color Wheel, accessed Feb. 2, 2020, http://warrenmars.com/visual_art/theory/ colour_wheel/colour_wheel.htm
18.
Kaur
,
S.
, and
Banga
,
D. V. K.
,
2013
, “
Content Based Image Retrieval: Survey and Comparison Between RGB and HSV Model
,”
Int. J. Eng. Trends Technol.
,
4
(
4
), pp.
575
579
.https://pdfs.semanticscholar.org/5277/5013f52617b34541e558d541fc3bc0c33692.pdf
19.
Miyanawala
,
T. P.
, and
Jaiman
,
R. K.
,
2018
, “
A Novel Deep Learning Method for the Predictions of Current Forces on Bluff Bodies
,”
ASME
Paper No. OMAE2018-78338
.10.1115/OMAE2018-78338
20.
Freese
,
D.
, and
Xu
,
Y.
,
2017
, “
Nonlinear Robust Path Control for a Field Robot Scouting in Strawberry Orchards
,”
ASME
Paper No. DSCC2017-5220
.10.1115/DSCC2017-5220
21.
Menendez-Aponte
,
P.
,
Kong
,
X.
, and
Xu
,
Y.
,
2019
, “
An Approximated, Control Affine Model for a Strawberry Field Scouting Robot Considering Wheel–Terrain Interaction
,”
Robotica
,
37
(
9
), pp.
1545
1561
.10.1017/S0263574719000134
22.
Simon
,
D.
,
2006
,
Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches
,
Wiley
,
Hoboken, NJ
.
23.
Wong
,
X. I.
, and
Majji
,
M.
,
2018
, “
Extended Kalman Filter for Stereo Vision-Based Localization and Mapping Applications
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
3
), p.
030908
.10.1115/1.4037784
24.
Gudmundsson
,
V.
,
Kristinsson
,
H.
,
Petersen
,
S.
, and
Hasan
,
A.
,
2018
, “
Robust UAV Attitude Estimation Using a Cascade of Nonlinear Observer and Linearized Kalman Filter
,”
ASME
Paper No. DSCC2018-9123
. 10.1115/DSCC2018-9123
25.
Menendez-Aponte
,
P.
,
Garcia
,
C.
,
Freese
,
D.
,
Defterli
,
S.
, and
Xu
,
Y.
,
2016
, “
Software and Hardware Architectures in Cooperative Aerial and Ground Robots for Agricultural Disease Detection
,”
International Conference on Collaboration Technologies and Systems
, Orlando, FL, Oct. 31–Nov. 4, pp.
354
358
.
You do not currently have access to this content.