Adaptive cruise control of autonomous vehicles can be posed as a multi-objective optimization problem where several conflicting criteria, e.g., fuel economy, tracking capability, ride comfort, and safety, need to be satisfied simultaneously. In order to reconcile these conflicting criteria, this paper presents a novel multi-objective predictive cruise control (MOPCC) approach in the feasible perturbation-based real-time iterative optimization framework. The longitudinal dynamics of vehicles are described as nonlinear car-tracking models. The new cost function for MOPCC is defined as the distance of the criteria vector to the vector of separately minimized criteria (i.e., a utopia point of the criteria). The weight-free MOPCC is then obtained by solving a constrained nonlinear optimal control problem in receding horizon fashion. Due to the difficulty in solving the optimization problem, the integrated perturbation analysis and sequential quadratic programming (InPA-SQP) is employed to compute the cruise controller. The merit of the proposed MOPCC is that it can systematically handle different cruise scenarios regardless of the weights of the predictive cruise control (PCC) criteria. Several driving cases are used to demonstrate the effectiveness and benefits of the proposed approach via comparing to weighted PCC approaches.

References

1.
Shakouri
,
P.
, and
Ordys
,
A.
,
2014
, “
Nonlinear Model Predictive Control Approach in Design of Adaptive Cruise Control With Automated Switching to Cruise Control
,”
Control Eng. Pract
,
26
(
1
), pp.
160
177
.
2.
Marsden
,
G.
,
Mcdonald
,
M.
, and
Brackstone
,
M.
,
2001
, “
Towards an Understanding of Adaptive Cruise Control
,”
Transp. Res. Part C Emerg. Tech.
,
9
(
1
), pp.
33
51
.
3.
Gilbert
,
E. G.
,
1976
, “
Vehicle Cruise: Improved Fuel Economy by Periodic Control
,”
Automatica
,
12
(
2
), pp.
159
166
.
4.
Bichi
,
M.
,
Ripaccioli
,
G.
,
Cairano
,
S. D.
,
Bernardini
,
D.
, Bemporad, A., and Kolmanovsky, I.,
2010
, “
Stochastic Model Predictive Control With Driver Behavior Learning for Improved Powertrain Control
,” 49th IEEE Conference on Decision and Control (
CDC
), Atlanta, GA, Dec. 15–17, pp.
6077
6082
.
5.
Dunbar
,
W. B.
, and
Caveney
,
D. S.
,
2012
, “
Distributed Receding Horizon Control of Vehicle Platoons: Stability and String Stability
,”
IEEE Trans. Auto. Cont.
,
57
(
3
), pp.
620
633
.
6.
Luo
,
L. H.
,
Liu
,
H.
,
Li
,
P.
, and
Wang
,
H.
,
2010
, “
Model Predictive Control for Adaptive Cruise Control With Multi-Objectives: Comfort, Fuel-Economy, Safety and Car-Following
,”
J. Zhejiang Univ. Sci.
,
11
(
3
), pp.
191
201
.
7.
Li
,
S. E.
,
Jia
,
Z.
,
Li
,
K.
, and
Cheng
,
B.
,
2015
, “
Fast Online Computation of a Model Predictive Controller and Its Application to Fuel Economy–Oriented Adaptive Cruise Control
,”
IEEE Intel. Trans. Syst.
,
16
(
3
), pp.
1199
1209
.
8.
Mayne
,
D. Q.
,
2014
, “
Model Predictive Control: Recent Developments and Future Promise
,”
Automatica
,
50
(
12
), pp.
2967
2986
.
9.
Zavala
,
V. M.
, and
Flores-Tlacuahuac
,
A.
,
2012
, “
Stability of Multi-Objective Predictive Control: A Utopia-Tracking Approach
,”
Automatica
,
48
(
10
), pp.
2627
2632
.
10.
Li
,
H.
,
Shi
,
Y.
, and
Yan
,
W.
,
2016
, “
Distributed Receding Horizon Control of Constrained Nonlinear Vehicle Formations With Guaranteed γ–Gain Stability
,”
Automatica
,
68
, pp.
148
154
.
11.
He
,
D.
,
Wang
,
L.
, and
Yu
,
L.
,
2015
, “
Multi-Objective Nonlinear Predictive Control of Process Systems: A Dual-Mode Tracking Control Approach
,”
J. Proc. Control
,
25
, pp.
142
151
.
12.
Lucia
,
S.
,
Kögel
,
M.
,
Zometa
,
P.
,
Quevedo
,
D. E.
, and
Findeisen
,
R.
,.
2016
, “
Predictive Control, Embedded Cyber-Physical Systems and Systems of Systems–A Perspective
,”
Annu. Rev. Control
,
41
, pp.
193
207
.
13.
Li
,
S. E.
,
Li
,
K. Q.
,
Rajesh
,
R.
, and
Wang
,
J. Q.
,
2011
, “
Model Predictive Multi-Objective Vehicular Adaptive Cruise Control
,”
IEEE Trans. Cont. Syst. Technol.
,
19
(
3
), pp.
556
566
.
14.
Li
,
S. E.
,
Li
,
K. Q.
, and
Wang
,
J. Q.
,
2013
, “
Economy-Oriented Vehicle Adaptive Cruise Control With Coordinating Multiple Objectives Function
,”
Veh. Syst. Dyn.
,
51
(
1
), pp.
1
17
.
15.
Kamal
,
M. A. S.
,
Mukai
,
M.
,
Murata
,
J.
, and
Kawabe
,
T.
,
2013
, “
Model Predictive Control of Vehicles on Urban Roads for Improved Fuel Economy
,”
IEEE Trans. Cont. Syst. Technol.
,
21
(
3
), pp.
831
841
.
16.
Kamal
,
M. A. S.
,
Mukai
,
M.
,
Murata
,
J.
, and
Kawabe
,
T.
,
2011
, “
Ecological Vehicle Control on Roads With Up-Down Slopes
,”
IEEE Trans. Intel. Trans. Syst.
,
12
(
3
), pp.
783
794
.
17.
HomChaudhuri
,
B.
,
Vahidi
,
A.
, and
Pisu
,
P.
,
2017
, “
Fast Model Predictive Control-Based Fuel Efficient Control Strategy for a Group of Connected Vehicles in Urban Road Conditions
,”
IEEE Trans. Cont. Syst. Technol.
,
25
(
2
), pp.
760
767
.
18.
Asadi
,
B.
, and
Vahidi
,
A.
,
2011
, “
Predictive Cruise Control: Utilizing Upcoming Traffic Signal Information for Improving Fuel Economy and Reducing Trip Time
,”
IEEE Trans. Cont. Syst. Technol.
,
19
(
3
), pp.
707
714
.
19.
He
,
D.
,
Sun
,
J.
, and
Chen
,
W.
,
2016
, “
Multiobjective Economic MPC of Constrained Non-Linear Systems
,”
IET Control Theory Appl.
,
10
(
13
), pp.
1487
1495
.
20.
Zhao
,
R. C.
,
Wong
,
P. K.
,
Xie
,
Z. C.
, and
Zhao
,
J.
,
2017
, “
Real-Time Weighted Multi-Objective Model Predictive Controller for Adaptive Cruise Control Systems
,”
Inter. J. Auto. Tech.
,
18
(
2
), pp.
279
292
.
21.
Lin
,
J. G. G.
,
2005
, “
On Min-Norm and Min-Max Methods of Multi-Objective Optimization
,”
Math. Program.
,
103
(
1
), pp.
1
33
.
22.
He
,
D.
,
Yu
,
S.
, and
Ou
,
L.
,
2018
, “
Lexicographic MPC With Multiple Economic Criteria for Constrained Nonlinear Systems
,”
J. Franklin Inst.
,
355
(
2
), pp.
753
773
.
23.
Campo-Martinez
,
C. O.
,
Ingimundarson
,
A.
,
Puig
,
V.
, and
Quevedo
,
J.
,
2008
, “
Objective Prioritization Using Lexicographic Minimize for MPC of Sewer Networks
,”
IEEE Trans. Control Syst. Technol.
,
16
(
1
), pp.
113
121
.
24.
He
,
D.
,
Wang
,
L.
, and
Sun
,
J.
,
2015
, “
On Stability of Multiobjective NMPC With Objective Prioritization
,”
Automatica
,
57
, pp.
189
198
.
25.
Sun
,
J.
,
Park
,
H.
,
Kolmanovsky
,
I.
, and Choroszucha, R.,
2013
, “
Adaptive Model Predictive Control in the IPA-SQP Framework
,”
52nd IEEE Conference Decision and Control
(
CDC
), Florence, Italy, Dec. 10–13, pp.
5565
5570
.
26.
Ghaemi
,
R.
,
Sun
,
J.
, and
Kolmanovsky
,
I. V.
,
2009
, “
Neighboring Extreme Solution for Nonlinear Discrete-Time Optimal Control Problems With State Inequality Constraints
,”
IEEE Trans. Auto. Cont.
,
54
(
11
), pp.
2674
2679
.
27.
Ghaemi
,
R.
,
2010
, “
Robust Model Cased Control of Constrained Systems
,”
Electrical Engineering Systems
,
University of Michigan
, Ann Arbor, MI.
28.
Ghaemi
,
R.
,
Sun
,
J.
, and
Kolmanovsky
,
I.
,
2008
, “
Overcoming Singularity and Degeneracy in Neighboring Extremal Solutions of Discrete-Time Optimal Control Problem With Mixed Input-State Constraints
,”
IFAC World
, Congress, Seoul, South Korea, July 6–11, pp.
1454
1459
.https://pdfs.semanticscholar.org/f708/f888919b4a273c3f8344915726c434e20bb2.pdf
29.
Zheng
,
Y.
,
Li
,
S. E.
,
Li
,
K.
,
Borrelli
,
F.
, and
Hedrick
,
J. K.
,
2017
, “
Distributed Model Predictive Control for Heterogeneous Vehicle Platoons Under Unidirectional Topologies
,”
IEEE Trans. Control Syst. Technol.
,
25
(
3
), pp.
899
910
.
30.
Moser
,
D.
,
Schmied
,
R.
, and
Waschl
,
H.
,
2017
, “
Flexible Spacing Adaptive Cruise Control Using Stochastic Model Predictive Control
,”
IEEE Trans. Control Syst. Technol.
,
99
, pp.
1
14
.
31.
Swaroop
,
D.
, and
Rajagopal
,
K. R.
,
2001
, “
A Review of Constant Time Headway Policy for Automatic Vehicle Following
,” IEEE Intelligent Transportation Systems Conference (
ITSC
), Oakland, CA, Aug. 25–29, pp.
65
69
.
32.
Ma
,
H.
,
Xie
,
H.
,
Huang
,
D.
, and
Xiong
,
S.
,
2015
, “
Effects of Driving Style on the Fuel Consumption of City Buses Under Different Road Conditions and Vehicle Masses
,”
Transp. Res. Part D Transp. Environ.
,
41
, pp.
205
216
.
33.
Li
,
H.
,
Shi
,
Y.
,
Yan
,
W.
, and
Liu
,
F.
,
2018
, “
Receding Horizon Consensus of General Linear Multi-Agent Systems With Input Constraints: An Inverse Optimality Approach
,”
Automatica
,
91
, pp.
10
16
.
34.
Li
,
H.
,
Yan
,
W.
, and
Shi
,
Y.
,
2018
, “
Triggering and Control Co-Design in Self-Triggered Model Predictive Control of Constrained Systems: With Guaranteed Performance
,”
IEEE Trans. Auto. Control
,
63
(
11
), pp.
4008
4015
.
35.
He
,
D.
,
Qiu
,
T.
, and
Luo
,
R.
,
2019
, “
Fuel Efficiency-Oriented Platooning Control of Connected Nonlinear Vehicles: A Distributed Economic MPC Approach
,”
Asian J. Control
(epub).
36.
Zhang
,
H.
,
Chen
,
Z.
, and
Fan
,
M. C.
,
2016
, “
Collaborative Control of Multivehicle Systems in Diverse Motion Patterns
,”
IEEE Trans. Control Syst. Technol.
,
24
(
4
), pp.
1488
1494
.
You do not currently have access to this content.