The artificial pancreas (AP) is an electro-mechanical device to control glucose (G) levels in the blood for people with diabetes using mathematical modeling and control system technology. There are many variables not measured and modeled by these devices that affect G levels. This work evaluates the effectiveness of two control systems for the case where critical inputs are unmeasured. This work compares and evaluates two predictive feedback control (FBC) algorithms in two unmeasured input studies. In the first study, the process is a dynamic transfer function model with one measured input variable and one unmeasured input variable. The process for the second study is a diabetes simulator with insulin feed rate (IFR) measured and carbohydrate consumption (CC) unmeasured. The feedback predictive control (FBPC) approach achieved much better control performance than model predictive control (MPC) in both studies. In the first study, MPC was shown to get worse as the process lag increases but FBPC was unaffected by process lag. In the diabetes simulation study, for five surrogate type 1 diabetes subjects, the standard deviation of G about its mean (standard deviation) (i.e., the set point) was 133% larger for MPC relative to FBPC. For FBPC, its standard deviation was less than 10% larger for unmeasured CC versus measured CC. Thus, FBPC appears to be a more effective AP control algorithm than MPC for unmeasured disturbances and may not perform much worse in practice when CC is measured versus when it is unmeasured since CC can be very inaccurate in real situations.

References

1.
Rae-Puckett
,
W.
,
1992
, “
Dynamic Modelling of Diabetes Mellitus
,” thesis, University of Wisconsin-Madison, Madison, WI.
2.
Aronoff
,
S. L.
,
Berkowitz
,
K.
,
Shreiner
,
B.
, and
Want
,
L.
,
2004
, “
Glucose Metabolism and Regulation: Beyond Insulin and Glucagon
,”
Diabetes Spectr.
,
17
(
3
), pp.
183
190
.
3.
Thorens
,
B.
,
2011
, “
Brain Glucose Sensing and Neural Regulation of Insulin and Glucagon Secretion
,”
Diabetes Obes. Metab.
,
13
(
Suppl. 1
), pp.
82
88
.
4.
Cobelli
,
C.
,
Renard
,
E.
, and
Kovatchev
,
B.
,
2011
, “
Artificial Pancreas: Past, Present, Future
,”
Diabetes
,
60
(
11
), pp.
2672
2682
.
5.
Bruttomesso
,
D.
,
Farret
,
A.
,
Costa
,
S.
,
Marescotti
,
M. C.
,
Vettore
,
M.
,
Avogaro
,
A.
,
Tiengo
,
A.
,
Dalla Man
,
C.
,
Place
,
J.
,
Facchinetti
,
A.
,
Guerra
,
S.
,
Magni
,
L.
,
De Nicolao
,
G.
,
Cobelli
,
C.
,
Renard
,
E.
, and
Maran
,
A.
,
2009
, “
Closed-Loop Artificial Pancreas Using Subcutaneous Glucose Sensing and Insulin Delivery and a Model Predictive Control Algorithm: Preliminary Studies in Padova and Montpellier
,”
J. Diabetes Sci. Technol.
,
3
(
5
), pp.
1014
1021
.
6.
Clarke
,
W. L.
,
Anderson
,
S.
,
Breton
,
M.
,
Patek
,
S.
,
Kashmer
,
L.
, and
Kovatchev
,
B.
,
2009
, “
Closed-Loop Artificial Pancreas Using Subcutaneous Glucose Sensing and Insulin Delivery and a Model Predictive Control Algorithm: The Virginia Experience
,”
J. Diabetes Sci. Technol.
,
3
(
5
), pp.
1031
1038
.
7.
Magni
,
L.
,
Raimondo
,
D. M.
,
Bossi
,
L.
,
Man
,
C. D.
,
De Nicolao
,
G.
,
Kovatchev
,
B.
, and
Cobelli
,
C.
,
2007
, “
Model Predictive Control of Type 1 Diabetes: An in Silico Trial
,”
J. Diabetes Sci. Technol.
,
1
(
6
), pp.
804
812
.
8.
Lee
,
H.
,
Buckingham
,
B. A.
,
Wilson
,
D. M.
, and
Bequette
,
B. W.
,
2009
, “
A Closed-Loop Artificial Pancreas Using Model Predictive Control and a Sliding Meal Size Estimator
,”
J. Diabetes Sci. Technol.
,
3
(
5
), pp.
1082
1090
.
9.
Percival
,
M. W.
,
Wang
,
Y.
,
Grosman
,
B.
,
Dassau
,
E.
,
Zisser
,
H.
,
Jovanovic
,
L.
, and
Doyle
,
F. J.
,
2011
, “
Development of a Multi-Parametric Model Predictive Control Algorithm for Inuslin Delivery in Type 1 Diabetes Mellitus Using Clinical Parameters
,”
J. Process Control
,
21
(
3
), pp.
391
404
.
10.
Wang
,
Q.
,
Xie
,
J.
,
Molenaar
,
P.
, and
Ulbrecht
,
J. S.
,
2015
, “
Model Predictive Control for Type 1 Diabetes Based on Personalized Linear Time-Varying Subject Model Consisting of Both Insulin and Meal Inputs: An in Silico Evaluation
,”
J. Diabetes Sci. Technol.
,
9
(
4
), pp.
941
942
.
11.
Noguchi
,
C. C. Y.
,
Hashimoto
,
S.
, and
Furutani
,
E.
,
2016
, “
In Silico Blood Glucose Control for Type 1 Diabetes With Meal Announcement Using Carbohydrate Intake and Glycemic Index
,”
Adv. Biomed. Eng.
,
5
, pp.
124
131
.
12.
Huyett
,
L. M.
,
Dassau
,
E.
,
Zisser
,
H. C.
, and
Doyle
,
F. J.
,
2015
, “
Design and Evaluation of a Robust PID Controller for a Fully Implantable Artificial Pancreas
,”
Ind. Eng. Chem. Res.
,
54
, pp.
10311
10321
.
13.
Kovatchev
,
B.
,
Tamborlane
,
W. V.
,
Cefalu
,
W. T.
, and
Cobelli
,
C.
,
2016
, “
The Artificial Pancreas in 2016: A Digital Treatment Ecosystem for Diabetes
,”
Diabetes Care
,
39
(
7
), pp.
1123
1126
.
14.
Bally
,
L.
,
Thabit
,
H.
, and
Hovorka
,
R.
,
2017
, “
Closed-Loop for Type 1 Diabetes—An Introduction and Appraisal for the Generalist
,”
BMC Med.
,
15
(
1
), p.
14
.
15.
Mei
,
Y.
,
2017
, “
Modeling and Control to Improve Blood Glucose Concentration for People With Diabetes
,” Ph.D. dissertation, Iowa State University, Ames, IA.
16.
Seborg
,
D. E.
,
Edgar
,
T. F.
, and
Mellichamp
,
D. A.
,
2004
,
Process Dynamics and Control
, 2nd ed.,
Wiley
, Hoboken, NJ.
17.
Rollins
,
D. K.
,
Roggendorf
,
A. K.
,
Khor
,
Y.
,
Mei
,
Y.
,
Lee
,
P.
, and
Loveland
,
S.
,
2015
, “
Dynamic Modeling With Correlated Inputs: Theory, Method and Experimental Demonstration
,”
Ind. Eng. Chem. Res.
,
54
(
7
), pp.
2136
2144
.
18.
Kotz
,
K.
,
Cinar
,
A.
,
Mei
,
Y.
,
Roggendorf
,
A. K.
,
Littlejohn
,
E.
,
Quinn
,
L.
, and
Rollins
,
D. K.
,
2014
, “
Multiple-Input Subject-Specific Modeling of Plasma Glucose Concentration for Feedforward Control
,”
Ind. Eng. Chem. Res.
,
53
(
47
), pp.
18216
18225
.
19.
McCall
,
A. L.
,
Cox
,
D. J.
,
Brodows
,
R.
,
Crean
,
J.
,
Johns
,
D.
, and
Kovatchev
,
B.
,
2009
, “
Reduced Daily Risk of Glycemic Variability: Comparison of Exenatide With Insulin Glargine
,”
Diabetes Technol. Ther.
,
11
(
6
), pp.
339
344
.
20.
Rollins
,
D. K.
,
Bhandari
,
N.
,
Chin
,
S.
,
Junge
,
T. M.
, and
Roosa
,
K. M.
,
2006
, “
Optimal Deterministic Transfer Function Modeling in the Presence of Serially Correlated Noise
,”
Chem. Eng. Res. Des.
,
84
(
1
), pp.
9
21
.
21.
Rollins
,
D. K.
,
Bhandari
,
N.
,
Kleinedler
,
J.
,
Kotz
,
K.
,
Strohbehn
,
A.
,
Boland
,
L.
,
Murphy
,
M.
,
Andre
,
D.
,
Vyas
,
N.
,
Welk
,
G.
, and
Franke
,
W.
,
2010
, “
Free-Living Inferential Modeling of Blood Glucose Level Using Only Noninvasive Inputs
,”
J. Process Control
,
20
(
1
), pp.
95
107
.
22.
Rollins
,
D. K.
,
Goeddel
,
C. E.
,
Matthews
,
S. L.
,
Mei
,
Y.
,
Roggendorf
,
A.
,
Littlejohn
,
E.
,
Quinn
,
L.
, and
Cinar
,
A.
,
2015
, “
An Extended Static and Dynamic Feedback/Feedforward Control Algorithm for Insulin Delivery in the Control of Blood Glucose Level
,”
Ind. Eng. Chem. Res.
,
54
(
26
), pp.
6734
6748
.
23.
Kovatchev
,
B. P.
,
Breton
,
M.
,
Man
,
C. D.
, and
Cobelli
,
C.
,
2009
, “
In Silico Preclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes
,”
J. Diabetes Sci. Technol.
,
3
(
1
), pp.
44
55
.
You do not currently have access to this content.