The purpose of this paper is to propose a controller for nonlinear systems to achieve robust asymptotic tracking of a class of reference signals, in the presence of matched and unmatched disturbances and model uncertainties. The disturbances and reference signals are generated using two linear exosystems. In the proposed controller, instead of using the upper bound of disturbances in the design process, their instantaneous values are estimated disturbance observer. Therefore, disturbance observer-based control (DOBC) methods are less conservative with respect to conventional approaches. In addition to the DOBC design, a new stepwise procedure based on backstepping technique and sliding mode control is proposed. In the proposed approach, in each step, estimations of disturbances and the upper bound of model uncertainties are used to compose virtual control laws; these virtual control laws compose the final control law. Finally, numerical and practical examples are simulated to show the efficiency of the proposed technique and also to verify the theoretical results.

References

1.
Huang
,
J.
,
2004
,
Nonlinear Output Regulation: Theory and Applications
,
SIAM
,
Philadelphia, PA
.
2.
Byrnes
,
C.
, and
Isidori
,
A.
,
1990
, “
Output Regulation of Nonlinear System
,”
IEEE Trans. Autom. Control
,
35
(
2
), pp.
131
140
.
3.
Wei
,
C.
, and
Wang
,
Q.
,
2016
, “
Disturbance Attenuation by Output Feedback for a Class of Nonlinear Systems
,”
Trans. Inst. Meas. Control
,
38
(
7
), pp.
884
892
.
4.
Fridman
,
E.
,
2003
, “
Output Regulation of Nonlinear Systems With Delay
,”
Syst. Control Lett.
,
50
(
2
), pp.
81
93
.
5.
Lu
,
M.
, and
Huang
,
J.
,
2015
, “
Robust Output Regulation Problem for Linear Time-Delay Systems
,”
Int. J. Control
,
88
(
6
), pp.
1236
1245
.
6.
Ding
,
Z.
,
2001
, “
Global Output Regulation of Uncertain Nonlinear Systems With Exogenous Signals
,”
Automatica
,
37
(
1
), pp.
113
119
.
7.
Ye
,
X.
, and
Huang
,
J.
,
2003
, “
Decentralized Adaptive Output Regulation for a Class of Large-Scale Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
48
(
2
), pp.
276
281
.
8.
Lin
,
X.
,
Lin
,
D.
, and
Lan
,
W.
,
2017
, “
Semi-Global Output Regulation for Discrete-Time Singular Linear Systems With Input Saturation Via Composite Nonlinear Feedback Control
,”
Trans. Inst. Meas. Control
,
39
(
3
), pp.
352
360
.
9.
Li
,
D. P.
,
Liu
,
Y. J.
,
Tong
,
S.
,
Chen
,
C. P.
, and
Li
,
D. J.
,
2018
, “
Neural Networks-Based Adaptive Control for Nonlinear State Constrained Systems With Input Delay
,”
IEEE Trans. Cybern.
,
49
(
4
), pp.
1249
1258
.
10.
Liu
,
L.
,
Wang
,
Z.
, and
Zhang
,
H.
,
2017
, “
Adaptive Fault-Tolerant Tracking Control for MIMO Discrete-Time Systems Via Reinforcement Learning Algorithm With Less Learning Parameters
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
1
), pp.
299
313
.
11.
Yu
,
J. B.
,
Zhao
,
Y.
, and
Wu
,
Y. Q.
,
2014
, “
Global Robust Output Regulation Control for Cascaded Nonlinear Systems Using the Internal Model Principle
,”
Int. J. Control
,
87
(
4
), pp.
802
811
.
12.
Chen
,
H.
,
Binwu
,
Z.
,
Zhao
,
T.
,
Wang
,
T.
, and
Li
,
K.
,
2016
, “
Finite-Time Tracking Control for Extended Nonholonomic Chained-Form Systems With Parametric Uncertainty and External Disturbance
,”
J. Vib. Control
,
24
(
1
), pp.
100
109
.
13.
Zarei
,
F.
, and
Shafiei
,
M. H.
,
2019
, “
On Event-Triggered Tracking for Non-Linear SISO Systems Via Sliding Mode Control
,”
IMA J. Math. Control Inf.
(epub).
14.
Shiravani
,
F.
, and
Shafiei
,
M. H.
,
2017
, “
Robust Output Regulation Via Sliding Mode Control and Disturbance Observer: Application in a Forced Van der Pol Chaotic Oscillator
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
9
), p.
091015
.
15.
Liu
,
X. H.
, and
Li
,
S. H.
,
2012
, “
Speed Control for PMSM Servo System Using Predictive Functional Control and Extended State Observer
,”
IEEE Trans. Ind Electron.
,
59
(
2
), pp.
1171
1183
.
16.
Yang
,
J.
,
Li
,
S. H.
, and
Yu
,
X. H.
,
2013
, “
Sliding-Mode Control for Systems With Mismatched Uncertainties Via a Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
60
(
1
), pp.
160
169
.
17.
Freeman
,
R.
, and
Kokotovic
,
P.
,
1996
,
Robust Nonlinear Control Design
,
Birkhauser
,
Boston, MA
.
18.
Montaseri
,
G.
, and
Yazdanpanah
,
M.
,
2013
, “
Practical Output Regulation of Uncertain Strict-Feedback Form Systems
,”
Asian J. Control
,
15
(
4
), pp.
1
4
.
19.
Sun
,
H.
, and
Guo
,
L.
,
2017
, “
Neural Network-Based DOBC for a Class of Nonlinear Systems With Unmatched Disturbances
,”
IEEE Trans. Neural Networks Learn. Syst.
,
28
(
2
), pp.
482
489
.
21.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
, 3rd ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.