The design of a trajectory tracking controller for a general class of n-link type (m,s) electrically driven wheeled mobile manipulators has been addressed in this paper. In order to achieve a high level of the tracking performance, an adaptive robust proportional-integral-derivative (PID) controller is proposed which only requires position measurements by designing a velocity observer. Integral actions are incorporated into the design of both controller and observer to reduce the steady-state error as much as possible. The dynamic surface control approach is also applied to reduce the design complexity at the actuator level. Lyapunov's direct method is used to guarantee that tracking and observation errors are semiglobally uniformly ultimately bounded. Simulation results are presented to illustrate the effectiveness of the proposed controller for a group of mobile manipulators.

References

1.
Yamamoto
,
Y.
, and
Yun
,
X.
,
1994
, “
Coordinating Locomotion and Manipulation of a Mobile Manipulator
,”
IEEE Trans. Autom. Control
,
39
(
6
), pp.
1326
1332
.
2.
Yamamoto
,
Y.
, and
Yun
,
X.
,
1996
, “
Effect of the Dynamic Interaction on Coordinated Control of Mobile Manipulators
,”
IEEE Trans. Rob. Autom.
,
12
(
5
), pp.
816
824
.
3.
Dong
,
W.
,
2002
, “
On Trajectory and Force Tracking Control of Constrained Mobile Manipulators With Parameter Uncertainty
,”
Automatica
,
38
(
9
), pp.
1475
1484
.
4.
Lin
,
S.
, and
Goldenberg
,
A. A.
,
2001
, “
Neural-Network Control of Mobile Manipulators
,”
IEEE Trans. Neural Networks
,
12
(
5
), pp.
1121
1133
.
5.
Mazur
,
A.
,
2004
, “
Hybrid Adaptive Control Laws Solving a Path-Following Problem for Non-Holonomic Mobile Manipulators
,”
Int. J. Control
,
77
(
15
), pp.
1297
1306
.
6.
White
,
G. D.
,
Bhatt
,
R. M.
, and
Krovi
,
V. N.
,
2007
, “
Dynamic Redundancy Resolution in a Nonholonomic Wheeled Mobile Manipulator
,”
Robotica
,
25
(
2
), pp.
147
156
.
7.
Li
,
Z.
,
Ge
,
S. S.
, and
Wang
,
Z.
,
2008
, “
Robust Adaptive Control of Coordinated Multiple Mobile Manipulators
,”
Mechatronics
,
18
(
5–6
), pp.
239
250
.
8.
Xu
,
D.
,
Zhao
,
D.
,
Yi
,
J.
, and
Tan
,
X.
,
2009
, “
Trajectory Tracking Control of Omnidirectional Wheeled Mobile Manipulators: Robust Neural Network-Based Sliding Mode Approach
,”
IEEE Trans. Syst., Man, Cybern. Part B Cybern.
,
39
(
3
), pp.
788
799
.
9.
Li
,
Z.
,
Li
,
J.
, and
Kang
,
Y.
,
2010
, “
Adaptive Robust Coordinated Control of Multiple Mobile Manipulators Interacting With Rigid Environments
,”
Automatica
,
46
(
12
), pp.
2028
2034
.
10.
Boukattaya
,
M.
,
Jallouli
,
M.
, and
Damak
,
T.
,
2012
, “
On Trajectory Tracking Control for Nonholonomic Mobile Manipulators With Dynamic Uncertainties and External Torque Disturbances
,”
Rob. Auton. Syst.
,
60
(
12
), pp.
1640
1647
.
11.
Sharma
,
B.
,
Singh
,
S.
,
Vanualailai
,
J.
, and
Prasad
,
A.
,
2018
, “
Globally Rigid Formation of n-Link Doubly Nonholonomic Mobile Manipulators
,”
Rob. Auton. Syst.
,
105
, pp.
69
84
.
12.
Zhai
,
D.-H.
, and
Xia
,
Y.
,
2016
, “
Adaptive Fuzzy Control of Multilateral Asymmetric Teleoperation for Coordinated Multiple Mobile Manipulators
,”
IEEE Trans. Fuzzy Syst.
,
24
(
1
), pp.
57
70
.
13.
Li
,
Z.
,
Yang
,
C.
, and
Tang
,
Y.
,
2013
, “
Decentralized Adaptive Fuzzy Control of Coordinated Multiple Mobile Manipulators Interacting With Non-Rigid Environment
,”
IET Control Theory Appl.
,
7
(
3
), pp.
397
410
.
14.
Xiao
,
L.
,
Liao
,
B.
,
Li
,
S.
,
Zhang
,
Z.
,
Ding
,
L.
, and
Jin
,
L.
,
2018
, “
Design and Analysis of FTZNN Applied to the Real-Time Solution of a Nonstationary Lyapunov Equation and Tracking Control of a Wheeled Mobile Manipulator
,”
IEEE Trans. Ind. Inf.
,
14
(
1
), pp.
98
105
.
15.
Dai
,
G.-B.
, and
Liu
,
Y.-C.
,
2017
, “
Distributed Coordination and Cooperation Control for Networked Mobile Manipulators
,”
IEEE Trans. Ind. Electron.
,
64
(
6
), pp.
5065
5074
.
16.
Galicki
,
M.
,
2015
, “
An Adaptive Non-Linear Constraint Control of Mobile Manipulators
,”
Mech. Mach. Theory
,
88
, pp.
63
85
.
17.
Yi
,
G.
,
Mao
,
J.
,
Wang
,
Y.
,
Guo
,
S.
, and
Miao
,
Z.
,
2018
, “
Adaptive Tracking Control of Nonholonomic Mobile Manipulators Using Recurrent Neural Networks
,”
Int. J. Control Autom. Syst.
,
16
(
3
), pp.
1390
1403
.
18.
Li
,
Z.
,
Ge
,
S. S.
,
Adams
,
M.
, and
Vijesoma
,
W. S.
,
2008
, “
Adaptive Robust Output-Feedback Motion/Force Control of Electrically Driven Nonholonomic Mobile Manipulators
,”
IEEE Trans. Control Syst. Technol.
,
16
(
6
), pp.
1308
1315
.
19.
Li
,
Z.
, and
Ge
,
S. S.
,
2013
,
Fundamentals in Modelling and Control of Mobile Manipulators
,
CRC Press
,
Boca Raton, FL
.
20.
Campion
,
G.
,
Bastin
,
G.
, and
Dandrea-Novel
,
B.
,
1996
, “
Structural Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
47
62
.
21.
Wang
,
D.
, and
Xu
,
G.
,
2003
, “
Full-State Tracking and Internal Dynamics of Nonholonomic Wheeled Mobile Robots
,”
IEEE/ASME Trans. Mech.
,
8
(
2
), pp.
203
214
.
22.
Shojaei
,
K.
, and
Shahri
,
A. M.
,
2012
, “
Output Feedback Tracking Control of Uncertain Non-Holonomic Wheeled Mobile Robots: A Dynamic Surface Control Approach
,”
IET Control Theory Appl.
,
6
(
2
), pp.
216
228
.
23.
Lewis
,
F. L.
,
Dawson
,
D. M.
, and
Abdallah
,
C. T.
,
2004
,
Robot Manipulator Control Theory and Practice
, 2nd ed.,
Marcel Dekker
,
New York
.
24.
Shojaei
,
K.
,
2015
, “
Neural Adaptive Output Feedback Control of Wheeled Mobile Robots With Saturating Actuators
,”
Int. J. Adapt. Control Signal Process.
,
29
(
7
), pp.
855
876
.
25.
Duleba
,
I.
,
2000
, “
Modeling and Control of Mobile Manipulators
,”
IFAC Proc. Vol.
,
33
(
27
), pp.
447
452
.
26.
Yao
,
B.
,
1996
, “
Adaptive Robust Control of Nonlinear Systems With Application to Control of Mechanical Systems
,” Ph.D. thesis, University of California at Berkeley, CA.
27.
Ioannou
,
P. A.
, and
Sun
,
J.
,
1996
,
Robust Adaptive Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
28.
Arteaga
,
M. A.
, and
Kelly
,
R.
,
2004
, “
Robot Control Without Velocity Measurements: New Theory and Experimental Results
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
297
308
.
29.
Berghuis
,
H.
, and
Nijmeijer
,
H.
,
1993
, “
A Passivity Approach to Controller-Observer Design for Robots
,”
IEEE Trans. Rob. Autom.
,
9
(
6
), pp.
740
754
.
30.
Swaroop
,
D.
,
Hedrick
,
J. K.
,
Yip
,
P. P.
, and
Gerdes
,
J. C.
,
2000
, “
Dynamic Surface Control for a Class of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
45
(
10
), pp.
1893
1899
.
31.
Shojaei
,
K.
, and
Shahri
,
A. M.
,
2011
, “
Experimental Study of Iterated Kalman Filters for Simultaneous Localization and Mapping of Autonomous Mobile Robots
,”
J. Intell. Rob. Syst.
,
63
(
3–4
), pp.
575
594
.
32.
Shojaei
,
K.
, and
Shahri
,
A. M.
,
2008
, “
Iterated Unscented SLAM Algorithm for Navigation of an Autonomous Mobile Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Nice, France, Sept. 22–26, pp.
1582
1587
.
33.
Chen
,
M.
,
2017
, “
Disturbance Attenuation Tracking Control for Wheeled Mobile Robots With Skidding and Slipping
,”
IEEE Trans. Ind. Electron.
,
64
(
4
), pp.
3359
3368
.
34.
Shojaei
,
K.
,
2015
, “
Saturated Output Feedback Control of Uncertain Nonholonomic Wheeled Mobile Robots
,”
Robotica
,
33
(
1
), pp.
87
105
.
You do not currently have access to this content.