Estimating residual unbalances of a flexible rotor that is fully levitated on active magnetic bearings (AMBs) are challenging tasks due to the modeling error of AMB rotordynamic parameters. In this work, an identification algorithm has been developed for the estimation of dynamic parameters of speed-dependent AMBs and residual unbalances in a high-speed flexible rotor-bearing system. Parameters are identified during an estimation process with the help of displacement and current information at AMB locations only. For reducing the finite element model to suit the measurement availability, an improved dynamic reduction scheme has been proposed, which considers the gyroscopic matrix also in the transformation matrix. For a numerical testing of the developed identification algorithm, a multidisk flexible-shaft rotor is considered, which is fully levitated on AMBs. Speed-dependent AMB parameters have been modeled by a cubic function. Proportional–integral–derivative (PID) controllers are used to control the supply current to AMBs. Displacements and currents are generated using the finite element method of the rotor-AMB numerical model. These responses have been used in the identification algorithm for the estimation of the AMB displacement and current stiffness as well as of residual unbalances, concurrently. The algorithm with the proposed reduction scheme has shown an excellent estimation agreement in the presence of noisy responses and bias errors in rotor model parameters.

References

1.
Aenis
,
M.
,
Knopf
,
E.
, and
Nordmann
,
R.
,
2002
, “
Active Magnetic Bearings for the Identification and Fault Diagnosis in Turbomachinery
,”
Mechatronics
,
12
(
8
), pp.
1011
1021
.
2.
Singh
,
S.
, and
Tiwari
,
R.
,
2016
, “
Model-Based Switching-Crack Identification in a Jeffcott Rotor With an Offset Disk Integrated With an Active Magnetic Bearing
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
3
), p.
031006
.
3.
Tiwari
,
R.
,
2017
,
Rotor Systems: Analysis and Identification
,
CRC Press
,
Boca Raton, FL
.
4.
Schweitzer
,
G.
,
Bleuler
,
H.
,
Traxler
,
A.
,
Cole
,
M.
,
Keogh
,
P.
,
Larsonneur
,
R.
,
Nordmann
,
R.
, and
Okada
,
Y.
,
2009
,
Magnetic Bearings: Theory, Design and Application to Rotating Machinery
,
Springer
,
London
.
5.
Wang
,
X.
,
Yu
,
L.
,
Wan
,
J.
, and
Cui
,
W.
,
1998
, “
Analysis on Stiffness and Damping Performance of Active Magnetic Bearing System
,”
J. Shanghai Univ. (English Ed.)
,
2
(
3
), pp.
221
225
.
6.
Shih
,
Y. P.
, and
Lee
,
A. C.
,
1997
, “
Identification of the Unbalance Distribution in Flexible Rotors
,”
Int. J. Mech. Sci.
,
39
(
7
), pp.
841
857
.
7.
Qiu
,
Z. L.
, and
Tieu
,
A. K.
,
1997
, “
Identification of Sixteen Force Coefficients of Two Journal Bearings From Impulse Responses
,”
Wear
,
212
(
2
), pp.
206
212
.
8.
Zhou
,
S.
, and
Shi
,
J.
,
2001
, “
Active Balancing and Vibration Control of Rotating Machinery: A Survey
,”
Shock Vib. Dig.
,
33
(
5
), pp.
361
371
.
9.
Moon
,
J. D.
,
Kim
,
B. S.
, and
Lee
,
S. H.
,
2006
, “
Development of the Active Balancing Device for High-Speed Spindle System Using Influence Coefficients
,”
Int. J. Mach. Tools Manuf.
,
46
(
9
), pp.
978
987
.
10.
Arredondo
,
I.
,
Jugo
,
J.
, and
Etxebarria
,
V.
,
2008
, “
Modeling and Control of a Flexible Rotor System With AMB-Based Sustentation
,”
ISA Trans.
,
47
(
1
), pp.
101
112
.
11.
Lees
,
A. W.
,
Sinha
,
J. K.
, and
Friswell
,
M. I.
,
2009
, “
Model-Based Identification of Rotating Machines
,”
Mech. Syst. Signal Process.
,
23
(
6
), pp.
1884
1893
.
12.
Tiwari
,
R.
,
Dohnal
,
F.
, and
Markert
,
R.
,
2012
, “
An Extended Field Balancing Procedure for Flexible Rotors Fully Levitated by Active Magnetic Bearings
,”
Tenth International Conference on Vibrations in Rotating Machinery
, London, Sept. 11–13, pp.
335
345.
13.
Edwards
,
S.
,
Lees
,
A. W.
, and
Friswell
,
M. I.
,
2000
, “
Experimental Identification of Excitation and Support Parameters of a Flexible Rotor-Bearings-Foundation System From a Single Run-Down
,”
J. Sound Vib.
,
232
(
5
), pp.
963
992
.
14.
Tiwari
,
R.
,
Lees
,
A. W.
, and
Friswell
,
M. I.
,
2002
, “
Identification of Speed-Dependent Bearing Parameters
,”
J. Sound Vib.
,
254
(
5
), pp.
967
986
.
15.
Sinha
,
J. K.
,
Friswell
,
M. I.
, and
Lees
,
A. W.
,
2002
, “
The Identification of the Unbalance and the Foundation Model of a Flexible Rotating Machine From a Single Run-Down
,”
Mech. Syst. Signal Process.
,
16
(
2–3
), pp.
255
271
.
16.
Tiwari
,
R.
, and
Chakravarthy
,
V.
,
2006
, “
Simultaneous Identification of Residual Unbalances and Bearing Dynamic Parameters From Impulse Responses of Rotor-Bearing Systems
,”
Mech. Syst. Signal Process.
,
20
(
7
), pp.
1590
1614
.
17.
Tiwari
,
R.
, and
Chougale
,
A.
,
2014
, “
Identification of Bearing Dynamic Parameters and Unbalance States in a Flexible Rotor System Fully Levitated on Active Magnetic Bearings
,”
Mechatronics
,
24
(
3
), pp.
274
286
.
18.
Tiwari
,
R.
, and
Talatam
,
V.
,
2015
, “
Estimation of Speed-Dependent Bearing Dynamic Parameters in Rigid Rotor Systems Levitated by Electromagnetic Bearings
,”
Mech. Mach. Theory
,
92
, pp.
100
112
.
19.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), pp.
380
380
.
20.
Paz
,
M.
,
1984
, “
Dynamic Condensation
,”
AIAA J.
,
22
(
5
), pp.
724
727
.
21.
Friswell
,
M. I.
, and
Mottershead
,
J. E.
,
1995
,
Finite Element Model Updating in Structural Dynamics
,
Kluwer Academic Publishers
, Dordrecht,
The Netherlands
.
22.
Kane
,
K.
, and
Torby
,
B. J.
,
1991
, “
The Extended Modal Reduction Method Applied to Rotor Dynamic Problems
,”
ASME J. Vib. Acoust.
,
113
(
1
), pp.
79
84
.
23.
Sahinkaya
,
M. N.
,
Abulrub
,
A. H. G.
,
Keogh
,
P. S.
, and
Burrows
,
C. R.
,
2007
, “
Multiple Sliding and Rolling Contact Dynamics for a Flexible Rotor/Magnetic Bearing System
,”
IEEE/ASME Trans. Mechatronics
,
12
(
2
), pp.
179
189
.
You do not currently have access to this content.