One very effective approach to suppress hysteresis from the piezoelectric actuator is to use the charge control across the associated capacitance. The charge driver often uses an additional capacitor connected to the piezo-actuator in series for the charge sense feedback control. When this charge sense is used with a voltage drive for the charge control, the applied voltage will include two parts. The one is the voltage drop across the useful electro-mechanical part and effectively converted to the driving force, whereas the other part indicates the equivalent voltage drop due to the hysteresis. In our research, we noticed that it is possible to use a simple estimator as the hysteresis voltage observer and use it to precompensate for the voltage drop. Comparing to the conventional hysteresis suppression achieved by the closed-loop positional control, we show significant improvement of the control performance. For dynamic applications, we also proposed a combination of the Preisach model with the hysteresis estimator to better suppress the nonlinear behavior. A series of experiments were conducted to demonstrate the performance improvement of the proposed compensator. A 10 nm and 25 nm maximum tracking error can be maintained while tracking a staircase reference and a 30 Hz sinusoidal signal, respectively.

References

1.
Adriaens
,
H.
,
de Koning
,
W. L.
, and
Banning
,
R.
,
2000
, “
Modeling Piezoelectric Actuators
,”
IEEE-ASME Trans. Mechatronics
,
5
(
4
), pp.
331
341
.
2.
Tonoli
,
A.
,
Oliva
,
S.
,
Carabelli
,
S.
, and
Civera
,
P.
,
2001
, “
Charge-Driven Piezoelectric Transducers in Self-Sensing Configuration
,”
Proc. SPIE
,
4327
, pp.
743
752
.
3.
Fleming
,
A. J.
, and
Moheimani
,
S. O. R.
,
2005
, “
A Grounded-Load Charge Amplifier for Reducing Hysteresis in Piezoelectric Tube Scanners
,”
Rev. Sci. Instrum.
,
76
(
7
), p. 073707.
4.
Yi
,
K. A.
, and
Veillette
,
R. J.
,
2005
, “
A Charge Controller for Linear Operation of a Piezoelectric Stack Actuator
,”
IEEE Trans. Control Syst. Technol.
,
13
(
4
), pp.
517
526
.
5.
Rios
,
S. A.
, and
Fleming
,
A. J.
,
2016
, “
Design of a Charge Drive for Reducing Hysteresis in a Piezoelectric Bimorph Actuator
,”
IEEE/ASME Trans. Mechatronics
,
21
(
1
), pp.
51
54
.
6.
Chen
,
L.-S.
, Yen, J.-Y., Chen, J. J., Kuo, F.-C., Chen, M.-S., Chen, Y.-Y., and Chung, B.-I.,
2013
, “
Precision Tracking of a Piezo-Driven Stage by Charge Feedback Control
,”
Precis. Eng.
,
37
(
4
), pp.
793
804
.
7.
Liu
,
Y. F.
, Hu, X. H., Zhang, Z. M., Cheng, L., Lin, Y., and Zhang, W. J.,
2015
, “
Modeling and Control of Piezoelectric Inertia-Friction Actuators: Review and Future Research Directions
,”
Mech. Sci.
,
6
(
2
), pp.
95
107
.
8.
Song
,
G.
,
Zhao
,
J.
,
Zhou
,
X.
, and
De Abreu-Garcia
,
J. A.
,
2005
, “
Tracking Control of a Piezoceramic Actuator With Hysteresis Compensation Using Inverse Preisach Model
,”
IEEE/ASME Trans. Mechatronics
,
10
(
2
), pp.
198
209
.
9.
Mittal
,
S.
, and
Menq
,
C. H.
,
2000
, “
Hysteresis Compensation in Electromagnetic Actuators Through Preisach Model Inversion
,”
IEEE/ASME Trans. Mechatronics
,
5
(
4
), pp.
394
409
.
10.
Qin
,
Y. D.
,
Tian
,
Y. L.
,
Zhang
,
D. W.
,
Shirinzadeh
,
B.
, and
Fatikow
,
S.
,
2013
, “
A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications
,”
IEEE/ASME Trans. Mechatronics
,
18
(
3
), pp.
981
989
.
11.
Preisach
,
F.
,
1935
, “
About the Magnetic Aftereffect
,”
Z. Phys.
,
94
(
5–6
), pp.
277
302
(in German).
12.
Mayergoyz
,
I. D.
,
1986
, “
Mathematical Models of Hysteresis
,”
IEEE Trans. Magn.
,
22
(
5
), pp. 603–608.
13.
Mayergoyz
,
I. D.
,
1991
,
Mathematical Models of Hysteresis
,
Springer-Verlag
,
New York
, p.
207
.
14.
Mayergoyz
,
I. D.
,
1988
, “
Dynamic Preisach Models of Hysteresis
,”
IEEE Trans. Magn.
,
24
(
6
), pp.
2925
2927
.
15.
Bernard
,
Y.
,
Mendes
,
E.
, and
Bouillault
,
F.
,
2002
, “
Dynamic Hysteresis Modeling Based on Preisach Model
,”
IEEE Trans. Magn.
,
38
(
2
), pp.
885
888
.
16.
Xiao
,
S. L.
, and
Li
,
Y. M.
,
2013
, “
Modeling and High Dynamic Compensating the Rate-Dependent Hysteresis of Piezoelectric Actuators Via a Novel Modified Inverse Preisach Model
,”
IEEE Trans. Control Syst. Technol.
,
21
(
5
), pp.
1549
1557
.
17.
Rakotondrabe
,
M.
,
Clévy
,
C.
, and
Lutz
,
P.
,
2010
, “
Complete Open Loop Control of Hysteretic, Creeped, and Oscillating Piezoelectric Cantilevers
,”
IEEE Trans. Autom. Sci. Eng.
,
7
(
3
), pp.
440
450
.
18.
Aphale
,
S. S.
,
Devasia
,
S.
, and
Reza Moheimani
,
S. O.
,
2008
, “
High-Bandwidth Control of a Piezoelectric Nanopositioning Stage in the Presence of Plant Uncertainties
,”
Nanotechnol.
,
19
(
12
), p. 125503.
19.
Kempf
,
C. J.
, and
Kobayashi
,
S.
,
1999
, “
Disturbance Observer and Feedforward Design for a High-Speed Direct-Drive Positioning Table
,”
IEEE Trans. Control Syst. Technol.
,
7
(
5
), pp.
513
526
.
20.
Shahruz
,
S. M.
,
2000
, “
Performance Enhancement of a Class of Nonlinear Systems by Disturbance Observers
,”
IEEE/ASME Trans. Mechatronics
,
5
(
3
), pp.
319
323
.
21.
Shim
,
H.
, and
Jo
,
N. H.
,
2009
, “
An Almost Necessary and Sufficient Condition for Robust Stability of Closed-Loop Systems With Disturbance Observer
,”
Automatica
,
45
(
1
), pp.
296
299
.
22.
Yi
,
J.
,
Chang
,
S.
, and
Shen
,
Y.
,
2009
, “
Disturbance-Observer-Based Hysteresis Compensation for Piezoelectric Actuators
,”
IEEE/ASME Trans. Mechatronics
,
14
(
4
), pp.
456
464
.
23.
Comstock
,
R. H.
,
1981
, “
Charge Control of Piezoelectric Actuators to Reduce Hysteresis Effects
,” The Charles Stark Draper Laboratory, Inc., Cambridge, MA, U.S. Patent No.
4263527A
.https://www.google.com/patents/US4263527
24.
Newcomb
,
C. V.
, and
Flinn
,
I.
,
1982
, “
Improving the Linearity of Piezoelectric Ceramic Actuators
,”
Electron. Lett.
,
18
(
11
), pp.
442
444
.
25.
Fleming
,
A. J.
, and
Moheimani
,
S. O. R.
,
2006
, “
Sensorless Vibration Suppression and Scan Compensation for Piezoelectric Tube Nanopositioners
,”
IEEE Trans. Control Syst. Technol.
,
14
(
1
), pp.
33
44
.
26.
Amin-Shahidi
,
D.
, and
Trumper
,
D. L.
,
2013
, “
Improved Charge Amplifier Using Hybrid Hysteresis Compensation
,”
Rev. Sci. Instrum.
,
84
(
8
), p. 085115.
27.
Fleming
,
A. J.
,
2013
, “
Charge Drive With Active DC Stabilization for Linearization of Piezoelectric Hysteresis
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
60
(
8
), pp.
1630
1637
.
28.
Clayton
,
G. M.
,
Tien
,
S.
,
Fleming
,
A. J.
,
Moheimani
,
S. O. R.
, and
Devasia
,
S.
,
2008
, “
Inverse-Feedforward of Charge-Controlled Piezopositioners
,”
Mechatronics
,
18
(
5–6
), pp.
273
281
.
29.
Bazghaleh
,
M.
,
Grainger
,
S.
,
Cazzolato
,
B.
,
Lu
,
T. F.
, and
Oskouei
,
R.
,
2014
, “
Implementation and Analysis of an Innovative Digital Charge Amplifier for Hysteresis Reduction in Piezoelectric Stack Actuators
,”
Rev. Sci. Instrum.
,
85
(
4
), p.
045005
.
30.
Islam
,
M. N.
, and
Seethaler
,
R. J.
,
2014
, “
Sensorless Position Control for Piezoelectric Actuators Using a Hybrid Position Observer
,”
IEEE/ASME Trans. Mechatronics
,
19
(
2
), pp.
667
675
.
31.
Mayergoyz
,
I. D.
,
1998
,
Nonlinear Diffusion of Electromagnetic Fields: With Applications to Eddy Currents and Superconductivity
(Electromagnetism),
Academic Press
,
San Diego, CA
, p.
xiv
.
You do not currently have access to this content.