This paper proposes an energy management strategy for a hybrid electric vehicle (HEV) with a turbocharged diesel engine. By introducing turbocharger to the HEV powertrain, air path dynamics of engine becomes extremely complex and critical to engine torque response during transient processes. Traditional strategy that adopts steady-state-map based engine model may not work properly in this situation as a result of its incapability of accurately capturing torque response. Thus, in this paper, a physical-law based air path model is utilized to simulate turbo “lag” phenomenon and predict air charge in cylinder. Meanwhile, engine torque boundaries are obtained on the basis of predicted air charge. A receding horizon structure is then implemented in optimal supervisory controller to generate torque split strategy for the HEV. Simulations are conducted for three cases: the first one is rule-based torque-split energy management strategy without optimization; the second one is online optimal control strategy using map-based engine model; and the third one is online optimal control strategy combining air path loop model. The comparison of the results shows that the proposed third method has the best fuel economy of all and demonstrates considerable improvements of fuel saving on the other two methods.

References

References
1.
Emadi
,
A.
,
Rajashekara
,
K.
,
Williamson
,
S. S.
, and
Lukic
,
S. M.
,
2005
, “
Topological Overview of Hybrid Electric and Fuel Cell Vehicular Power System Architectures and Configurations
,”
IEEE Trans. Veh. Technol.
,
54
(
3
), pp.
763
770
.
2.
Yang
,
Y.
,
Arshad-Ali
,
K.
,
Roeleveld
,
J.
, and
Emadi
,
A.
,
2016
, “
State-of-the-Art Electrified Powertrains—Hybrid, Plug-In, and Electric Vehicles
,”
Int. J. Powertrains
,
5
(
1
), pp.
1
29
.
3.
Pisu
,
P.
, and
Rizzoni
,
G.
,
2007
, “
A Comparative Study of Supervisory Control Strategies for Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
15
(3), pp. 506–518.
4.
Liu
,
J.
, and
Peng
,
H.
,
2008
, “
Modeling and Control of a Power-Split Hybrid Vehicle
,”
IEEE Trans. Control Syst. Technol.
,
16
(
6
), pp.
1242
1251
.
5.
Kim
,
N.
, and
Rousseau
,
A.
,
2012
, “
Sufficient Conditions of Optimal Control Based on Pontryagin's Minimum Principle for Use in Hybrid Electric Vehicles
,”
Proc. Inst. Mech. Eng., Part D
,
226
(
9
), pp.
1160
1170
.
6.
Musardo
,
C.
,
Rizzoni
,
G.
,
Guezennec
,
Y.
, and
Staccia
,
B.
,
2005
, “
A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management
,”
Eur. J. Control
,
11
(
4–5
), pp.
509
524
.
7.
Paganelli
,
G.
,
Delprat
,
S.
,
Guerra
,
T.
,
Rimaux
,
J.
, and
Santin
,
J.
,
2002
, “
Equivalent Consumption Minimization Strategy for Parallel Hybrid Powertrains
,”
IEEE 55th Vehicular Technology Conference
(
VTC Spring 2002
), Birmingham, AL, May 6–9, pp.
2076
2081
.
8.
Serrao
,
L.
,
Onori
,
S.
, and
Rizzoni
,
G.
,
2011
, “
A Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
3
), p.
031012
.
9.
Yuan
,
Z.
,
Teng
,
L.
,
Fengchun
,
S.
, and
Peng
,
H.
,
2013
, “
Comparative Study of Dynamic Programming and Pontryagin's Minimum Principle on Energy Management for a Parallel Hybrid Electric Vehicle
,”
Energies
,
6
(
12
), pp.
2305
2318
.
10.
Borhan
,
H.
,
Vahidi
,
A.
,
Phillips
,
A. M.
,
Kuang
,
M. L.
,
Kolmanovsky
,
I. V.
, and
Di Cairano
,
S.
,
2012
, “
MPC-Based Energy Management of a Power-Split Hybrid Electric Vehicle
,”
IEEE Trans. Control Syst. Technol.
,
20
(
3
), pp.
593
603
.
11.
Kermani
,
S.
,
Delprat
,
S.
,
Guerra
,
T. M.
,
Trigui
,
R.
, and
Jeanneret
,
B.
,
2012
, “
Predictive Energy Management for Hybrid Vehicle
,”
Control Eng. Pract.
,
20
(
4
), pp.
408
420
.
12.
Sun
,
C.
,
Hu
,
X.
,
Moura
,
S. J.
, and
Sun
,
F.
,
2015
, “
Velocity Predictors for Predictive Energy Management in Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
23
(
3
), pp.
1197
1204
.
13.
Assanis
,
D. N.
,
Filipi
,
Z. S.
,
Fiveland
,
S. B.
, and
Syrimis
,
M.
,
2003
, “
A Predictive Ignition Delay Correlation Under Steady-State and Transient Operation of a Direct Injection Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
125
(
2
), pp.
450
457
.
14.
Lindenkamp, Nils, Claude-Pascal Stöber-Schmidt, and Peter Eilts, 2009, “
Strategies for Reducing NOx-and Particulate Matter Emissions in Diesel Hybrid Electric Vehicles
,”
SAE
Paper No. 2009-01-1305.
15.
Kim
,
N.
,
Cha
,
S.
, and
Peng
,
H.
,
2011
, “
Optimal Control of Hybrid Electric Vehicles Based on Pontryagin's Minimum Principle
,”
IEEE Trans. Control Syst. Technol.
,
19
(
5
), pp.
1279
1287
.
16.
Eriksson
,
L.
,
2007
, “
Modeling and Control of Turbocharged SI and DI Engines
,”
Oil Gas Sci. Technol.
,
62
(
4
), pp.
523
538
.
17.
Sharma
,
R.
,
Nesic
,
D.
, and
Manzie
,
C.
,
2009
, “
Control Oriented Modeling of Turbocharged (TC) Spark Ignition (SI) Engine
,”
SAE
Paper No. 2009-01-0684.
18.
Sivertsson
,
M.
, and
Eriksson
,
L.
,
2014
, “
Optimal Transient Control Trajectories in Diesel-Electric Systems-Part I: Modeling, Problem Formulation, and Engine Properties
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
021601
.
19.
Danninger
,
A.
,
Bachinger
,
M.
,
Stolz
,
M.
, and
Horn
,
M.
,
2014
, “
Online Calculation of Diesel Engine Torque Dynamics
,”
IEEE Conference on Control Applications
(
CCA
2014), Juan Les Antibes, France, Oct. 8–10, pp.
669
674
.
20.
Baumann
,
B.
,
Washington
,
G.
,
Glenn
,
B.
, and
Rizzoni
,
G.
,
2000
, “
Mechatronic Design and Control of Hybrid Electric Vehicles
,”
IEEE/ASME Trans. Mechatronics
,
5
(
1
), pp.
58
72
.
21.
Lin
,
C.-C.
,
Peng
,
H.
,
Grizzle
,
J. W.
, and
Kang
,
J.-M.
,
2003
, “
Power Management Strategy for a Parallel Hybrid Electric Truck
,”
IEEE Trans. Control Syst. Technol.
,
11
(
6
), pp.
839
849
.
You do not currently have access to this content.