Image feature-based localization and mapping applications useful in field robotics are considered in this paper. Exploiting the continuity of image features and building upon the tracking algorithms that use point correspondences to provide an instantaneous localization solution, an extended Kalman filtering (EKF) approach is formulated for estimation of the rigid body motion of the camera coordinates with respect to the world coordinate system. Recent results by the authors in quantifying uncertainties associated with the feature tracking methods form the basis for deriving scene-dependent measurement error statistics that drive the optimal estimation approach. It is shown that the use of certain relative motion models between a static scene and the moving target can be recast as a recursive least squares problem and admits an efficient solution to the relative motion estimation problem that is amenable to real-time implementations on board mobile computing platforms with computational constraints. The utility of the estimation approaches developed in the paper is demonstrated using stereoscopic terrain mapping experiments carried out using mobile robots. The map uncertainties estimated by the filter are utilized to establish the registration of the local maps into the global coordinate system.

References

References
1.
Geibig
,
T.
,
Shoyketbrod
,
A.
,
Hommes
,
A.
,
Herschel
,
R.
, and
Pohl
,
N.
,
2016
, “
Compact 3D Imaging Radar Based on FMCW Driven Frequency Scanning Antennas
,”
IEEE
Radar Conference
, Philadelphia, PA, May 2–6, pp. 1–5.
2.
Revere
,
A.
,
2016
, “
Texas Instruments: Opt8241 3D Time-of-Flight (TOF) Sensor
,”
Axiom
,
4
(
1
).http://design.avnet.com/axiom/texas-instruments-opt8241-3d-time-flight-tof-sensor/
3.
StereoLabs
,
2017
, “
Zed Camera
,” Stereolabs Inc., San Francisco, CA, accessed Oct. 25, 2017, https://www.stereolabs.com/
4.
Light
,
D. L.
,
1980
,
Manual of Photogrammetry
, 4th ed.,
American Society of Photogrammetry
,
Falls Church, VA
.
5.
Forsyth
,
D.
, and
Ponce
,
J.
,
2003
,
Computer Vision: A Modern Approach
,
Prentice Hall
,
Englewood Cliffs, NJ
.
6.
Hartley
,
R. I.
, and
Zisserman
,
A.
,
2000
,
Multiple View Geometry in Computer Vision
,
Cambridge University Press
,
Cambridge, UK
.
7.
Szeliski
,
R.
,
2011
,
Computer Vision: Algorithms and Applications
,
Springer
,
New York
.
8.
Se
,
S.
,
Lowe
,
D.
, and
Little
,
J.
,
2002
, “
Mobile Robot Localization and Mapping With Uncertainty Using Scale-Invariant Visual Landmarks
,”
Int. J. Rob. Res.
,
21
(8), pp.
735
758
.
9.
Trawny
,
N.
,
Mourikis
,
A. I.
,
Roumeliotis
,
S. I.
,
Johnson
,
A. E.
, and
Montgomery
,
J. F.
,
2007
, “
Vision Aided Inertial Navigation for Pin-Point Landing Using Observations of Mapped Landmarks
,”
J. Field Rob.
,
24
(5), pp. 357–378.
10.
Olson
,
C. F.
,
Matthies
,
L. H.
,
Wright
,
J. R.
,
Li
,
R.
, and
Di
,
K.
,
2007
, “
Visual Terrain Mapping for Mars Exploration
,”
Comput. Vision Image Understanding
,
105
(
1
), pp.
73
85
.
11.
Majji
,
M.
,
Davis
,
J.
,
Doebbler
,
J.
,
Macomber
,
B.
,
Junkins
,
J. L.
,
Vavrina
,
M.
, and
Vian
,
J.
, 2011, “
Terrain Mapping and Landing Operations Using Vision Based Navigation Systems
,”
AIAA
Paper No. AIAA 2011-6581.
12.
Junkins
,
J. L.
,
Majji
,
M.
,
Macomber
,
B.
,
Davis
,
J.
,
Doebbler
,
J.
, and
Noster
,
R.
,
2010
, “
Small Body Proximity Sensing With a Novel HD3D Ladar System
,”
33rd Annual AAS Guidance and Control Meeting
, Breckenridge, CO, Feb. 5–10, Paper No. AAS-11-054.
13.
Moravec
,
H.
,
1980
, “
Obstacle Avoidance and Navigation in the Real World by Seeing a Robot Rover
,” Stanford University, Stanford, CA, Report No.
STAN-CS-80-813
.http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjZhYH8wYvXAhUC64MKHQxBB7MQFgglMAA&url=http%3A%2F%2Fwww.dtic.mil%2Fget-tr-doc%2Fpdf%3FAD%3DADA092604&usg=AOvVaw1HKJ9hMnvfLnBLHaEcT7BJ
14.
Johnson
,
A.
,
Cheng
,
Y.
, and
Matthies
,
L.
,
2000
, “
Machine Vision for Autonomous Small Body Navigation
,”
IEEE
Aerospace Conference
, Big Sky, MT, Mar. 18–25, pp.
661
671
.
15.
Pollyfeys, M., and Van-Gool, L., 2002, “
From Images to 3d Models
,”
Commun. ACM
,
45
(7), pp. 50–55.
16.
Thrun
,
S.
,
Burgard
,
W.
, and
Fox
,
D.
,
2005
,
Probabilistic Robotics
,
MIT Press
,
Cambridge, MA
.
17.
Brown
,
M. Z.
,
Burschka
,
D.
, and
Hager
,
G. D.
,
2003
, “
Advances in Computational Stereo
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
25
(
8
), pp.
993
1008
.
18.
Scharstein
,
D.
, and
Szeliski
,
R.
,
2002
, “
A Taxonomy and Evaluation of Dense Two Frame Stereo Correspondence Algorithms
,”
Int. J. Comput. Vision
,
47
(
1–3
), pp.
7
42
.
19.
Pollyfeys
,
M.
,
Nister
,
D.
,
J.-Frahm
,
M.
, and
Morodohoi
,
P.
,
2008
, “
Detailed Real-Time Urban 3D Reconstruction From Video
,”
Int. J. Comput. Vision
,
78
(
2–3
), pp.
143
167
.
20.
Snavely
,
N.
,
Seitz
,
S. M.
, and
Szeliski
,
R.
,
2008
, “
Modeling the World From Internet Photo Collections
,”
Int. J. Comput. Vision
,
80
(
2
), pp.
189
210
.
21.
Agarwal
,
S.
,
Furukawa
,
Y.
,
Snavely
,
N.
,
Curless
,
B.
,
Seitz
,
S. M.
, and
Szeliski
,
R.
, 2011, “
Building Rome in a Day
,”
Commun. ACM
,
57
(10), pp. 105–112.
22.
Triggs
,
B.
,
McLauchlan
,
P.
,
Hartley
,
R.
, and
Fitzgibbon
,
A.
,
2000
, “
Bundle Adjustment—A Modern Synthesis
,”
Vision Algorithms: Theory and Practice
,
B.
Triggs
,
A.
Zisserman
, and
R.
Szelinksi
, eds.,
Springer-Verlag
,
Berlin
.
23.
Baumberg
,
A.
,
2000
, “
Reliable Feature Matching Across Widely Separated Views
,”
IEEE
Conferene on Computer Vision and Pattern Recognition, Hilton Head Island, SC, June 13–15, pp.
774
781
.
24.
Schaffalitzky
,
F.
, and
Zisserman
,
A.
,
2002
, “
Multi-View Matching for Unordered Image Sets or “How Do I Organize My Holiday Snaps?
,”
European Conference on Computer Vision
(
ECCV
), Copenhagen, Denmark, May 28–31, pp.
414
431
.
25.
Geiger
,
D.
,
Ladendorf
,
B.
, and
Yuille
,
A.
,
1995
, “
Occlusions and Binocular Stereo
,”
Int. J. Comput. Vision
,
14
(
3
), pp.
211
226
.
26.
Lensch
,
H. P. A.
,
Kautz
,
J.
, and
Goesele
,
M.
,
2003
, “
Image-Based Reconstruction of Spatial Appearance and Geometric Detail
,”
ACM Trans. Graphics
,
22
(
2
), pp.
234
257
.
27.
Haralick
,
R.
,
Joo
,
H.
,
C.-Lee
,
N.
,
Zhuang
,
X.
,
Vaidya
,
V. G.
, and
Kim
,
M. B.
,
1989
, “
Pose Estimation From Corresponding Point Data
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
19
(
6
), pp.
1426
1446
.
28.
Nister
,
D.
,
2004
, “
An Efficient Solution to the Five Point Relative Pose Problem
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
26
(
6
), pp. 756–770.
29.
Nister
,
D.
,
2005
, “
Preemptive Ransac for Live Structure and Motion Estimation
,”
Mach. Vision Appl.
,
16
(
5
), pp.
321
329
.
30.
Nister
,
D.
,
2004
, “
A Minimal Solution to the Generalized 3-Point Relative Pose Problem
,”
J. Math. Imag. Vision
,
27
(
1
), pp. 67–79.
31.
Majji
,
M.
, and
Junkins
,
J.
,
2013
, “
Recursive Nonlinear State Estimation and Real Time Mapping Utilizing Machine Vision
,”
16th Yale Workshop on Adaptive and Learning Systems
, New Haven, CT, June 5–7.
32.
Lowe
,
D.
,
2004
, “
Distinctive Image Features From Scale Invariant Keypoints
,”
Int. J. Comput. Vision
,
60
(
2
), pp.
91
110
.
33.
Bay
,
H.
, Ess, A., Tuytelaars, T., and Van Gool, L.,
2008
, “
Surf: Speeded Up Robust Features
,”
Comput. Vision Image Understanding
,
110
(3), pp.
346
359
.
34.
Mikolajczk
,
K.
, and
Schmid
,
C.
,
2005
, “
A Performance Evaluation of Local Descriptors
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
27
(
10
), pp.
1615
1630
.
35.
Tola
,
E.
,
Lepetit
,
V.
, and
Fua
,
P.
,
2010
, “
Daisy: An Efficient Dense Descriptor Applied to Wide Baseline Stereo
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
32
(
5
), pp.
815
830
.
36.
Crassidis
,
J.
, and
Junkins
,
J.
,
2011
,
Optimal Estimation of Dynamic Systems
(Applied Mathematics and Nonlinear Science Series), 2nd ed.,
CRC Press
,
Boca Raton, FL
.
37.
Cheng
,
Y.
,
Maimone
,
M.
, and
Matthies
,
L.
,
2005
, “
Visual Odometry on the Mars Exploration Rovers
,”
IEEE
International Conference on Systems, Man and Cybernetics
, Waikoloa, HI, Oct. 10–12, pp.
903
910
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.1848&rep=rep1&type=pdf
38.
Maimone
,
M.
,
Cheng
,
Y.
, and
Matthies
,
L.
,
2007
, “
Two Years of Visual Odometry on the Mars Exploration Rovers
,”
J. Field Rob.
,
24
(
3
), pp.
169
186
.
39.
Kalman
,
R.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
35
45
.
40.
Kim
,
S. G.
,
Crassidis
,
J. L.
,
Cheng
,
Y.
,
Fosbury
,
A. M.
, and
Junkins
,
J. L.
,
2007
, “
Kalman Filtering for Relative Spacecraft Attitude and Position Estimation
,”
J. Guid. Control Dyn.
,
30
(
1
), pp.
133
143
.
41.
Valasek
,
J.
,
Gunnam
,
K.
,
Kimmett
,
J.
,
Junkins
,
J. L.
, and
Hughes
,
D.
,
2005
, “
Vision-Based Sensor and Navigation System for Autonomous Air Refueling
,”
J. Guid. Control Dyn.
,
28
(
5
), pp.
979
989
.
42.
Junkins
,
J. L.
,
Wazni
,
K. P.
,
Hughes
,
D. C.
, and
Pariyapong
,
V.
,
1999
, “
Vision-Based Navigation for Rendezvous, Docking, and Proximity Operations
,”
22nd Annual AAS Guidance and Control Conference
, Breckenridge, CO, Feb. 7–10, Paper No.
AAS 99-021
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.16.9198&rep=rep1&type=pdf.
43.
Dubins
,
L. E.
,
1957
, “
On Curves of Minimal Length With a Constraint on Average Curvature, and With Prescribed Initial and Terminal Positions and Tangents
,”
Am. J. Math.
,
79
(
3
), pp.
497
516
.
44.
Smith
,
R.
,
Self
,
M.
, and
Cheeseman
,
P.
,
1990
, “
Estimating Uncertain Spatial Relationships in Robotics
,”
Autonomous Robot Vehicles
,
Springer
,
New York
, pp.
167
193
.
45.
Lowe
,
D. G.
,
1999
, “
Object Recognition From Local Scale-Invariant Features
,”
Seventh IEEE International Conference on Computer Vision
(
ICCV
), Kerkyra, Greece, Sept. 20–27, pp.
1150
1157
.http://www.cs.ubc.ca/~lowe/papers/iccv99.pdf
46.
Shi
,
J.
, and
Tomasi
,
C.
,
1994
, “
Good Features to Track
,”
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(
CVPR
), Seattle, WA, June 21–23, pp.
593
600
.
47.
Bay
,
H.
,
Tuytelaars
,
T.
, and
Van Gool
,
L.
,
2006
, “
Surf: Speeded Up Robust Features
,” European Conference on Computer Vision (
ECCV
), Graz, Austria, May 7–13, pp.
404
417
.
48.
Lucas
,
B. D.
, and
Kanade
,
T.
,
1981
, “
An Iterative Image Registration Technique With an Application to Stereo Vision
,” International Joint Conference on Artificial Intelligence (
IJCAI
), Vancouver, BC, Canada, Aug. 24–28, pp. 674–679https://dl.acm.org/citation.cfm?id=1623280.
49.
Baker
,
S.
, and
Matthews
,
I.
,
2004
, “
Lucas-Kanade 20 Years on: A Unifying Framework
,”
Int. J. Comput. Vision
,
56
(
3
), pp.
221
255
.
50.
Tola
,
E.
,
Lepetit
,
V.
, and
Fua
,
P.
,
2008
, “
A Fast Local Descriptor for Dense Matching
,”
IEEE Conference on Computer Vision and Pattern Recognition
(
CVPR
), Anchorage, AK, June 23–28, pp.
1
8
.http://imagine.enpc.fr/~monasse/Stereo/Projects/TolaFuaLepetit08.pdf
51.
Muja
,
M.
, and
Lowe
,
D. G.
,
2009
, “
Fast Approximate Nearest Neighbors With Automatic Algorithm Configuration
,” Fourth International Conference on Computer Vision Theory and Applications (
VISIGRAPP
), Lisboa, Portugal, Feb. 5–8, pp. 331–340.http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0001787803310340
52.
Davison
,
A. J.
,
Reid
,
I. D.
,
Molton
,
N. D.
, and
Stasse
,
O.
,
2007
, “
Monoslam: Real-Time Single Camera SLAM
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
29
(
6
), pp.
1052
1067
.
53.
Engel
,
J.
,
Schöps
,
T.
, and
Cremers
,
D.
,
2014
, “
LSD-SLAM: Large-Scale Direct Monocular SLAM
,” European Conference on Computer Vision (
ECCV
), Zürich, Switzerland, Sept. 6–12, pp.
834
849
.
54.
Murray
,
D.
, and
Jennings
,
C.
,
1997
, “
Stereo Vision Based Mapping and Navigation for Mobile Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Albuquerque, NM, Apr. 20–25, pp.
1694
1699
.
55.
Mei
,
C.
,
Sibley
,
G.
,
Cummins
,
M.
,
Newman
,
P. M.
, and
Reid
,
I. D.
,
2009
, “
A Constant-Time Efficient Stereo SLAM System
,” 20th British Machine Vision Conference (
BMVC
), London, Sept. 7–10, pp.
1
11
.http://www.robots.ox.ac.uk/~mobile/Papers/AConstantTimeEfficientStereoSLAMSystem_mei_bmvc_09.pdf
56.
Fleet
,
D.
, and
Weiss
,
Y.
,
2006
, “
Optical Flow Estimation
,”
Handbook of Mathematical Models in Computer Vision
,
Springer
,
Boston, MA
, pp.
237
257
.
57.
Tomasi
,
C.
, and
Kanade
,
T.
,
1991
, “
Detection and Tracking of Point Features
,” Carnegie Mellon University, Pittsburgh, PA, Report No.
CMU-CS-91-132
.https://cecas.clemson.edu/~stb/klt/tomasi-kanade-techreport-1991.pdf
58.
Rowell
,
N.
,
Parkes
,
S.
, and
Dunstan
,
M.
,
2013
, “
Image Processing for Near Earth Object Optical Guidance Systems
,”
IEEE Trans. Aerosp. Electron. Syst.
,
49
(
2
), pp.
1057
1072
.
59.
Johnson
,
A. E.
,
Goldberg
,
S. B.
,
Cheng
,
Y.
, and
Matthies
,
L. H.
,
2008
, “
Robust and Efficient Stereo Feature Tracking for Visual Odometry
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Pasadena, CA, May 19–23, pp.
39
46
.
60.
Matthies
,
L.
,
Maimone
,
M.
,
Johnson
,
A.
,
Cheng
,
Y.
,
Willson
,
R.
,
Villalpando
,
C.
,
Goldberg
,
S.
,
Huertas
,
A.
,
Stein
,
A.
, and
Angelova
,
A.
,
2007
, “
Computer Vision on Mars
,”
Int. J. Comput. Vision
,
75
(
1
), pp.
67
92
.
61.
Zeisl
,
B.
,
Georgel
,
P. F.
,
Schweiger
,
F.
,
Steinbach
,
E. G.
,
Navab
,
N.
, and
Munich
,
G.
,
2009
, “
Estimation of Location Uncertainty for Scale Invariant Features Points
,” 20th British Machine Vision Conference (
BMVC
), London, Sept. 7–10, pp.
1
12
.http://campar.in.tum.de/pub/zeisl2009bmvc/zeisl2009bmvc.poster.pdf
62.
Kanazawa
,
Y.
, and
Kanatani
,
K.
,
2001
, “
Do We Really Have to Consider Covariance Matrices for Image Features?
,”
Eighth IEEE International Conference on Computer Vision
(
ICCV
), Vancouver, BC, Canada, July 7–14, pp.
301
306
.
63.
Nickels
,
K.
, and
Hutchinson
,
S.
,
2002
, “
Estimating Uncertainty in SSD-Based Feature Tracking
,”
Image and Vision Comput.
,
20
(
1
), pp.
47
58
.
64.
Sheorey
,
S.
,
Keshavamurthy
,
S.
,
Yu
,
H.
,
Nguyen
,
H.
, and
Taylor
,
C. N.
,
2014
, “
Uncertainty Estimation for KLT Tracking
,”
Computer Vision-ACCV Workshops
, Singapore, Nov. 1–2, pp.
475
487
.
65.
Dorini
,
L. B.
, and
Goldenstein
,
S. K.
,
2011
, “
Unscented Feature Tracking
,”
Comput. Vision Image Understanding
,
115
(
1
), pp.
8
15
.
66.
XueIuan
,
W.
,
2016
, “
A Study of Photometry and Image Formation for Application in Localization and Mapping
,”
Ph.D. dissertation
, University at Buffalo Aerospace Engineering, Buffalo, NY.http://adsabs.harvard.edu/abs/2016PhDT.......170W
67.
Bar-Shalom
,
Y.
,
Li
,
X. R.
, and
Kirubarajan
,
T.
,
2004
,
Estimation With Applications to Tracking and Navigation: Theory, Algorithms and Software Technology and Engineering
,
Wiley
,
New York
.
68.
Friedland
,
B.
,
1973
, “
Optimum Steady State Position and Velocity Estimation Using Noisy Sampled Position Data
,”
IEEE Trans. Aerosp. Electron. Syst.
,
9
(6), pp.
906
911
.
69.
Schaub
,
H.
, and
Junkins
,
J.
,
2009
,
Analytical Mechanics of Space Systems
(AIAA Education Series),
AIAA
,
Reston, VA
.
70.
Lu
,
F.
, and
Milios
,
E.
,
1997
, “
Globally Consistent Range Scan Alignment for Environment Mapping
,”
Auton. Rob.
,
4
(
4
), pp.
333
349
.
71.
Grisetti
,
G.
,
Kummerle
,
R.
,
Stachniss
,
C.
, and
Burgard
,
W.
,
2010
, “
A Tutorial on Graph-Based SLAM
,”
IEEE Intell. Transp. Syst. Mag.
,
2
(
4
), pp.
31
43
.
72.
Carlone
,
L.
,
2013
, “
A Convergence Analysis for Pose Graph Optimization Via Gauss-Newton Methods
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10, pp.
965
972
.
73.
Carlone
,
L.
, and
Censi
,
A.
,
2014
, “
From Angular Manifolds to the Integer Lattice: Guaranteed Orientation Estimation With Application to Pose Graph Optimization
,”
IEEE Trans. Rob.
,
30
(
2
), pp.
475
492
.
74.
Wedderburn
,
R. W.
,
1974
, “
Quasi-Likelihood Functions, Generalized Linear Models, and the Gauss—Newton Method
,”
Biometrika
,
61
(
3
), pp.
439
447
.
75.
Slama, C. T. C. C., and Henriksen, S.,
1980
,
Manual of Photogrammetry
, 4th ed.,
American Society of Photogrammetry
,
Falls Church, VA
.
76.
Arun
,
K. S.
,
Huang
,
T. S.
, and
Blostein
,
S. D.
,
1987
, “
Least-Squares Fitting of Two 3-D Point Sets
,”
IEEE Trans. Pattern Anal. Mach. Intell.
, PAMI-9(5), pp.
698
700
.
77.
Yousif
,
K.
,
Bab-Hadiashar
,
A.
, and
Hoseinnezhad
,
R.
,
2015
, “
An Overview to Visual Odometry and Visual SLAM: Applications to Mobile Robotics
,”
Intell. Ind. Syst.
,
1
(
4
), pp.
289
311
.
78.
Fischler
,
M. A.
, and
Bolles
,
R. C.
,
1981
, “
Random Sample Consensus: A Paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography
,”
Commun. ACM
,
24
(
6
), pp.
381
395
.
79.
Lucas
,
B.
, and
Kanade
,
T.
,
1981
, “
An Iterative Image Registration Technique Applied to Stereo Vision
,”
Image Understanding Workshop
, pp.
121
130
.
80.
Baker
,
S.
, and
Matthews
,
I.
,
2004
, “
Lucas-Kanade 20 Years On: A Unifying Framework
,”
Int. J. Comput. Vision
,
56
(
3
), pp.
221
255
.
81.
Zhang
,
G.
, and
Vela
,
P. A.
,
2015
, “
Good Features to Track for Visual SLAM
,”
IEEE Conference on Computer Vision and Pattern Recognition
(
CVPR
), Boston, MA, June 7–12, pp.
1373
1382
.
82.
Hui
,
C.
, and
Shiwei
,
M.
,
2013
, “
Visual SLAM Based on EKF Filtering Algorithm From Omnidirectional Camera
,”
IEEE 11th International Conference on Electronic Measurement & Instruments
(
ICEMI
), Harbin, China, Aug. 16–19, pp.
660
663
.
83.
Schaub
,
H.
, and
Junkins
,
J. L.
,
2003
,
Analytical Mechanics of Space Systems
,
AIAA
,
Reston, VA
.
84.
Lefferts
,
E. J.
,
Markley
,
F. L.
, and
Shuster
,
M. D.
,
1982
, “
Kalman Filtering for Spacecraft Attitude Estimation
,”
J. Guid. Control Dyn.
,
5
(
5
), pp.
417
429
.
85.
Schaub
,
H.
, and
Junkins
,
J. L.
,
1996
, “
Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues Parameters
,”
J. Astronaut. Sci.
,
44
(
1
), pp.
1
19
.http://dnc.tamu.edu/drjunkins/yearwise/1996/Archival/JAS_44_1_1996_stereographic.pdf
86.
Wong
,
X. I.
, and
Majji
,
M.
,
2016
, “
A Structured Light System for Relative Navigation Applications
,”
IEEE Sens. J.
,
16
(
17
), pp.
6662
6679
.
87.
Crassidis
,
J. L.
, and
Junkins
,
J. L.
,
2011
,
Optimal Estimation of Dynamic Systems
,
CRC Press
,
Boca Raton, FL
.
88.
Jazwinski
,
A. H.
,
2007
,
Stochastic Processes and Filtering Theory
,
Courier Corporation
,
North Chelmsford, MA
.
89.
FLIR, 2017, “
Bumblebee XB3 1394b
,” FLIR Integrated Imaging Solutions Inc., Richmond, BC, Canada, accessed Oct. 25, 2017, https://www.ptgrey.com/bumblebee-xb3-1394b-stereo-vision-camera-systems-2
90.
Davis
,
J.
,
Doebbler
,
J.
, and
Junkins
,
J.
, “
Holonomic Omnidirectional Motion Emulation Robot
,” Texas A&M University Land, Air and Space Robotic Laboratory, College Station, TX.
91.
Aldoma
,
A.
,
Marton
,
Z.-C.
,
Tombari
,
F.
,
Wohlkinger
,
W.
,
Potthast
,
C.
,
Zeisl
,
B.
,
Rusu
,
R. B.
,
Gedikli
,
S.
, and
Vincze
,
M.
,
2012
, “
Tutorial: Point Cloud Library: Three-Dimensional Object Recognition and 6 DOF Pose Estimation
,”
IEEE Rob. Autom. Mag.
,
19
(3), pp. 80–91.
92.
Graettinger
,
A.
,
Valentine
,
G.
,
Sonder
,
I.
,
Ross
,
P.-S.
,
White
,
J.
, and
Taddeucci
,
J.
,
2014
, “
Maar-Diatreme Geometry and Deposits: Subsurface Blast Experiments With Variable Explosion Depth
,”
Geochem. Geophys. Geosyst.
,
15
(
3
), pp.
740
764
.
93.
Rusu
,
R. B.
, and
Cousins
,
S.
,
2011
, “
3D is Here: Point Cloud Library (PCL)
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
1
4
.
You do not currently have access to this content.