This paper focuses on the design of an observer-based backstepping controller (BC) for a nonlinear hydraulic differential cylinder system. The system is affected by some uncertainties including modeling errors, external disturbances, and measurement noise. An observer-based control approach is proposed to assure suitable tracking performance and to increase robustness against unknown inputs. The task to estimate system states as well as unknown inputs is performed by a linear proportional-integral-observer (PIO). Input–output linearization is used to linearize the nonlinear system model to be used for the PIO structure. On the other hand, BC is utilized based on nonlinear system model to construct the Lyapunov function and to design the control input simultaneously. Stability or negativeness of the derivative of every-step Lyapunov function is fulfilled. Structural improvement regarding the combination of BC and PIO is the main aim of this contribution. This is supported by a novel stability proof and new conditions for the whole control loop with integrated PIO. Furthermore, parameter selection of BC is elaborately considered by defining a performance/energy criterion. A complete robustness evaluation considering different levels of additional measurement noise, modeling errors, and external disturbances is presented for the first time in this contribution. Experimental results validate the advantages of proposed observer-based approach compared to PIO-based sliding mode control (PIO-SMC) and industrial standard P-controller.

References

1.
Jelali
,
M.
, and
Kroll
,
A.
, 2003,
Hydraulic Servo-Systems: Modelling, Identification and Control
, Springer, London.
2.
Mintsa
,
H. A.
,
Venugopal
,
R.
,
Kenné
,
J.-P.
, and
Belleau
,
C.
,
2012
, “
Feedback Linearization-Based Position Control of an Electrohydraulic Servo System With Supply Pressure Uncertainty
,”
IEEE Trans. Control Syst. Technol.
,
20
(
4
), pp.
1092
1099
.
3.
Marino
,
R.
, and
Tomei
,
P.
,
1993
, “
Robust Stabilization of Feedback Linearizable Time-Varying Uncertain Nonlinear Systems
,”
Automatica
,
29
(
1
), pp.
181
189
.
4.
Mobayen
,
S.
, and
Baleanu
,
D.
,
2016
, “
Stability Analysis and Controller Design for the Performance Improvement of Disturbed Nonlinear Systems Using Adaptive Global Sliding Mode Control Approach
,”
Nonlinear Dyn.
,
83
(
3
), pp.
1557
1565
.
5.
Mobayen
,
S.
, and
Tchier
,
F.
,
2016
, “
An LMI Approach to Adaptive Robust Tracker Design for Uncertain Nonlinear Systems With Time-Delays and Input Nonlinearities
,”
Nonlinear Dyn.
,
85
(
3
), pp.
1965
1978
.
6.
Ferreira
,
A.
,
Bejarano
,
F. J.
, and
Fridman
,
L. M.
,
2011
, “
Robust Control With Exact Uncertainties Compensation: With or Without Chattering?
,”
IEEE Trans. Control Syst. Technol.
,
19
(
5
), pp.
969
975
.
7.
Liu
,
Y.
, and
Söffker
,
D.
,
2014
, “
Robust Control Approach for Input–Output Linearizable Nonlinear Systems Using High-Gain Disturbance Observer
,”
Int. J. Robust Nonlinear Control
,
24
(
2
), pp.
326
339
.
8.
Khalil
,
H. K.
,
1996
,
Nonlinear Systems
, Vol.
3
,
Prentice Hall
, Upper Saddle River,
NJ
.
9.
Ginoya
,
D.
,
Shendge
,
P. D.
, and
Phadke
,
S. B.
,
2013
, “
Sliding Mode Control for Mismatched Uncertain Systems Using an Extended Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
61
(
4
), pp.
1983
1992
.
10.
Nakkarat
,
P.
, and
Kuntanapreeda
,
S.
,
2009
, “
Observer-Based Backstepping Force Control of an Electrohydraulic Actuator
,”
Control Eng. Pract.
,
17
(
8
), pp.
895
902
.
11.
Yao
,
J.
,
Jiao
,
Z.
, and
Ma
,
D.
,
2014
, “
Extended-State-Observer-Based Output Feedback Nonlinear Robust Control of Hydraulic Systems With Backstepping
,”
IEEE Trans. Ind. Electron.
,
61
(
11
), pp.
6285
6293
.
12.
Guo
,
Q.
,
min Yin
,
J.
,
Yu
,
T.
, and
Jiang
,
D.
,
2017
, “
Coupled-Disturbance-Observer-Based Position Tracking Control for a Cascade Electro-Hydraulic System
,”
ISA Trans.
,
68
, pp.
367
380
.
13.
Bakhshande
,
F.
, and
Söffker
,
D.
,
2017
, “
Robust Control Approach for a Hydraulic Differential Cylinder System Using a Proportional-Integral-Observer-Based Backstepping Control
,”
American Control Conference
(
ACC
), Seattle, WA, May 24–26, pp.
3102
3107
.
14.
Shafai
,
B.
, and
Saif
,
M.
,
2015
, “
Proportional-Integral-Observer in Robust Control, Fault Detection, and Decentralized Control of Dynamic Systems
,”
Control and Systems Engineering
, Vol 27, A. In: El-Osery A., Prevost J., eds.,
Springer
, Cham, Swizterland, pp.
13
43
.
15.
Bakhshande
,
F.
, and
Söffker
,
D.
,
2015
, “
Proportional-Integral-Observer: A Brief Survey With Special Attention to the Actual Methods Using ACC Benchmark
,”
IFAC-PapersOnLine
,
48
(
1
), pp.
532
537
.
16.
Liu
,
Y.
, and
Söffker
,
D.
,
2012
, “
Variable High-Gain Disturbance Observer Design With Online Adaption of Observer Gains Embedded in Numerical Integration
,”
Math. Comput. Simul.
,
82
(
5
), pp.
847
857
.
17.
Söffker
,
D.
,
Yu
,
T. J.
, and
Müller
,
P. C.
,
1995
, “
State Estimation of Dynamical Systems With Nonlinearities by Using Proportional-Integral-Observer
,”
Int. J. Syst. Sci.
,
26
(
9
), pp.
1571
1582
.
18.
Johnson
,
C. D.
,
1976
, “
Theory of Disturbance Accommodating Controllers
,”
Control Dyn. Syst.
,
12
, pp.
387
489
.
19.
Hippe
,
P.
, and
Wurmthaler
,
C.
,
1985
,
Zustandsregelung: Theoretische Grundlagen und anwendungsorientierte Regelungskonzepte
,
Springer
, Springer-Verlag, Berlin.
20.
Johnson
,
C. D.
,
1968
, “
Optimal Control of the Linear Regulator With Constant Disturbances
,”
IEEE Trans. Autom. Control
,
13
(
4
), pp.
416
421
.
21.
Johnson
,
C. D.
,
1971
, “
Accommodation of External Disturbances in Linear Regulator and Servomechanism Problems
,”
IEEE Trans. Automatic Control
,
16
(
6
), pp.
635
644
.
22.
Davison
,
E. J.
,
1972
, “
The Output Control of Linear Time-Invariant Multivariable Systems With Unmeasurable Arbitrary Disturbances
,”
IEEE Trans. Autom. Control
,
17
(
5
), pp.
621
630
.
23.
Bakhshande
,
F.
,
2018
, “
Observer-Based Robust Nonlinear Control Design
,” Ph.D. thesis, Universität Duisburg-Essen, Fakultät für Ingenieurwissenschaften Maschinenbau und Verfahrenstechnik, Duisburg, Germany.
24.
Müller
,
P. C.
, and
Başpinar
,
C.
,
2000
, “
Convergence of Nonlinearity Estimations by Linear Estimators
,”
J. Appl. Math. Mech.
,
80
(
S2
), pp.
325
326
.
25.
Krstić
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotović
,
P.
,
1992
, “
Adaptive Nonlinear Control Without Overparametrization
,”
Syst. Control Lett.
,
19
(
3
), pp.
177
185
.
26.
Kanellakopoulos
,
I.
,
Kokotovic
,
P. V.
, and
Morse
,
A. S.
,
1991
, “
Systematic Design of Adaptive Controllers for Feedback Linearizable Systems
,”
IEEE Trans. Autom. Control
,
36
(
11
), pp.
1241
1253
.
27.
Wu
,
J.
,
Chen
,
W.
,
Yang
,
F.
,
Li
,
J.
, and
Zhu
,
Q.
,
2015
, “
Global Adaptive Neural Control for Strict-Feedback Time-Delay Systems With Predefined Output Accuracy
,”
Inf. Sci.
,
301
, pp.
27
43
.
28.
Wu
,
J.
,
Li
,
J.
, and
Chen
,
W.
,
2014
, “
Semi-Globally/Globally Stable Adaptive NN Backstepping Control for Uncertain MIMO Systems With Tracking Accuracy Known a Priori
,”
J. Franklin Inst.
,
351
(
12
), pp.
5274
5309
.
29.
Wu
,
J.
,
Chen
,
W.
, and
Li
,
J.
,
2015
, “
Fuzzy-Approximation-Based Global Adaptive Control for Uncertain Strict-Feedback Systems With a Priori Known Tracking Accuracy
,”
Fuzzy Sets Syst.
,
273
, pp.
1
25
.
30.
Tran
,
D. T.
,
Jeong
,
K.
,
Jun
,
G.
,
Kiro
,
J. S.
,
Kiro
,
M. J.
, and
Ahn
,
K. K.
,
2017
, “
Adaptive Gain Back-Stepping Sliding Mode Control for Electrohydraulic Servo System With Uncertainties
,”
14th International Conference on Ubiquitous Robots and Ambient Intelligence
(
URAI
), Jeju, South Korea, 28 June–1 July, pp.
534
539
.http://www.urai2017.org/
31.
Chen
,
F.
,
Jiang
,
R.
,
Zhang
,
K.
,
Jiang
,
B.
, and
Tao
,
G.
,
2016
, “
Robust Backstepping Sliding-Mode Control and Observer-Based Fault Estimation for a Quadrotor UAV
,”
IEEE Trans. Ind. Electron.
,
63
(
8
), pp.
5044
5056
.https://ieeexplore.ieee.org/abstract/document/7448915/
You do not currently have access to this content.