In this work, an error-integral-driven sliding mode controller (EID-SMC) is discussed for multi-input multi-output (MIMO) linear time-invariant (LTI) systems. The boundary layer approach is utilized in order to eliminate the chattering problem. Though the sliding variable remains in the vicinity of the sliding surface without reaching it, it is shown that the steady-state error vanishes exponentially asymptotically within a boundary layer, for systems of relative order one, even if parameter uncertainty and unmatched input disturbances exist. The pole placement is accomplished indirectly with an iterative optimization procedure by considering limits on controls and state. Finally, the output-feedback controller is augmented with a Luenberger full-state and disturbance observer.

References

1.
Ryan
,
E.
, and
Corless
,
M.
,
1984
, “
Ultimate Boundedness and Asymptotic Stability of a Class of Uncertain Dynamical Systems Via Continuous and Discontinuous Feedback Control
,”
IMA J. Math. Control Inf.
,
1
(
3
), pp.
223
242
.
2.
Dorling
,
C.
, and
Zinober
,
A.
,
1986
, “
Two Approaches to Hyperplane Design in Multivariable Variable Structure Control Systems
,”
Int. J. Control
,
44
(
1
), pp.
65
82
.
3.
Zhihong
,
M.
, and
Yu
,
X. H.
,
1996
, “
Terminal Sliding Mode Control of MIMO Linear Systems
,” 35th
IEEE
Conference on Decision and Control
, Kobe, Japan, Dec. 11–13, Vol.
4
, pp.
4619
4624
.
4.
Ackermann
,
J.
, and
Utkin
,
V.
,
1998
, “
Sliding Mode Control Design Based on Ackermann's Formula
,”
IEEE Trans. Autom. Control
,
43
(
2
), pp.
234
237
.
5.
Chang
,
J.-L.
, and
Chen
,
Y.-P.
,
2000
, “
Sliding Vector Design Based on the Pole-Assignment Method
,”
Asian J. Control
,
2
(
1
), pp.
10
15
.
6.
Tang
,
C. Y.
, and
Misawa
,
E. A.
,
1998
, “
Discrete Variable Structure Control for Linear Multivariable Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
122
(
4
), pp.
783
792
.
7.
Nunes
,
E. V.
,
Peixoto
,
A. J.
,
Oliveira
,
T. R.
, and
Hsu
,
L.
,
2014
, “
Global Exact Tracking for Uncertain MIMO Linear Systems by Output Feedback Sliding Mode Control
,”
J. Franklin Inst.
,
351
(
4
), pp.
2015
2032
.
8.
Martin
,
J. C.
, and
Leitmann
,
G.
,
1981
, “
Continuous State Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Dynamic Systems
,”
IEEE Trans. Autom. Control
,
26
(
5
), pp.
1139
1144
.
9.
Cunha
,
J. P. V.
,
Hsu
,
L.
,
Costa
,
R. R.
, and
Lizarralde
,
F.
,
2003
, “
Output-Feedback Model-Reference Sliding Mode Control of Uncertain Multivariable Systems
,”
IEEE Trans. Autom. Control
,
48
(
12
), pp.
2245
2250
.
10.
Utkin
,
V.
, and
Shi
,
J.
,
1996
, “
Integral Sliding Mode in Systems Operating Under Uncertainty Conditions
,” 35th
IEEE
Conference on Decision and Control
, Kobe, Japan, Dec. 11–13, Vol.
4
, pp.
4591
4596
.
11.
Sam
,
Y. M.
,
Osman
,
J. H.
, and
Ghani
,
M. R. A.
,
2004
, “
A Class of Proportional-Integral Sliding Mode Control With Application to Active Suspension System
,”
Syst. Control Lett.
,
51
(
3
), pp.
217
223
.
12.
Rubagotti
,
M.
,
Estrada
,
A.
,
Castanos
,
F.
,
Ferrara
,
A.
, and
Fridman
,
L.
,
2011
, “
Integral Sliding Mode Control for Nonlinear Systems With Matched and Unmatched Perturbations
,”
IEEE Trans. Autom. Control
,
56
(
11
), pp.
2699
2704
.
13.
Angulo
,
M. T.
,
Fridman
,
L.
, and
Levant
,
A.
,
2012
, “
Output-Feedback Finite-Time Stabilization of Disturbed LTI Systems
,”
Automatica
,
48
(
4
), pp.
606
611
.
14.
Cavallo
,
A.
, and
Natale
,
C.
,
2002
, “
A Robust Output Feedback Control Law for MIMO Plants
,” 15th
IFAC
World Congress on Automatic Control
, Barcelona, Spain, July 21–26, Vol.
15
, pp.
13
18
.
15.
Bao
,
J.
, and
Lee
,
P. L.
,
2007
,
Process Control: The Passive Systems Approach
(Advances in Industrial Control), 1st ed.,
Springer-Verlag
,
London
.
16.
Lin
,
C.-A.
, and
Gündeş
,
A. N.
,
2000
, “
Multi-Input Multi-Output PI Controller Design
,” 39th
IEEE
Conference on Decision and Control
, Sydney, Australia, Dec. 12–15, Vol.
4
, pp.
3702
3707
.
17.
Xiong
,
Q.
,
Cai
,
W.-J.
, and
He
,
M.-J.
,
2007
, “
Equivalent Transfer Function Method for PI/PID Controller Design of MIMO Processes
,”
J. Process Control
,
17
(
8
), pp.
665
673
.
18.
Clarke
,
F. H.
, and
Vinter
,
R. B.
,
2009
, “
Stability Analysis of Sliding Mode Feedback Control
,”
J. Cybern. Control
,
38
, pp.
1169
1192
.
19.
Milosavljevic
,
C.
,
1985
, “
General Conditions for the Existence of a Quasi-Sliding Mode on the Switching Hyperplane in Discrete Variable Structure Systems
,”
Autom. Remote Control
,
46
(
3
), pp.
307
314
.
20.
Sarptürk
,
S. Z.
,
Istefanopulos
,
Y.
, and
Kaynak
,
O.
,
1987
, “
On the Stability of Discrete-Time Sliding Mode Control Systems
,”
IEEE Trans. Autom. Control
,
32
(
10
), pp.
930
932
.
21.
Slotine
,
J.-J. E.
, and
Sastry
,
S. S.
,
1983
, “
Tracking Control of Non-Linear Systems Using Sliding Surfaces, With Application to Robot Manipulators
,”
Int. J. Control
,
38
(
2
), pp.
465
492
.
22.
Slotine
,
J.-J. E.
,
1984
, “
Sliding Controller Design for Non-Linear Systems
,”
Int. J. Control
,
40
(
2
), pp.
421
434
.
23.
Fridman
,
L.
,
2001
, “
An Averaging Approach to Chattering
,”
IEEE Trans. Autom. Control
,
46
(
8
), pp.
1260
1265
.
24.
Young
,
K. D.
,
Utkin
,
V. I.
, and
Özgüner
,
U.
,
1999
, “
A Control Engineer's Guide to Sliding Mode Control
,”
IEEE Trans. Control Syst. Technol.
,
7
(
3
), pp.
328
342
.
25.
Johansson
,
K. H.
,
2000
, “
The Quadruple-Tank Process: A Multivariable Laboratory Process With an Adjustable Zero
,”
IEEE Trans. Control Syst. Technol.
,
8
(
3
), pp.
456
465
.
26.
Drazenovic
,
B.
,
Milosavljevic
,
C.
, and
Veselic
,
B.
,
2013
, “
Comprehensive Approach to Sliding Mode Design and Analysis in Linear Systems
,”
Advances in Sliding Mode Control
(Lecture Notes in Control and Information Sciences, Vol.
440
),
B.
Bandyopadhyay
,
S.
Janardhanan
, and
S. K.
Spurgeon
, eds.,
Springer
,
Berlin
, pp.
1
19
.
You do not currently have access to this content.