When interacting with a virtual object (VO) through a haptic device, it is crucial to feedback a contact force to the human operator (HO) that displays the VO physical properties with high fidelity. The core challenge, here, is to expand the renderable range of these properties, including larger stiffness and smaller inertia, at the available sampling rate. To address this challenge, a framework entitled high-fidelity contact rendering (HFCR) has been developed in this paper. The framework consists of three main strategies: an energy-based rendering of the contact force, smooth transition (ST) between contact modes, and remaining leak dissipation (LD). The essence of these strategies is to make the VO emulate its continuous-time counterpart. This is achieved via physically meaningful modifications in the constitutive relations to suppress artificial energy leaks. The strategies are first developed for the one-dimensional (1D) canonical VO; then, generalization to the multivariable case is discussed. Renderability has been analyzed exploring different stability criteria within a unified approach. This leads to stability charts and identification of renderable range of properties in the presence and absence of the HO. The framework has been validated through simulation and various experiments. Results verify its promising aspects for various scenarios including sustained contact and sudden collision events with or without the HO.

References

1.
Constantinescu
,
D.
,
Salcudean
,
S.
, and
Croft
,
E.
,
2005
, “
Haptic Rendering of Rigid Contacts Using Impulsive and Penalty Forces
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
309
323
.10.1109/TRO.2004.840906
2.
Wang
,
Q.
,
Chen
,
H.
,
Wu
,
W.
,
Qin
,
J.
, and
Heng
,
P.
,
2012
, “
Impulse-Based Rendering Methods for Haptic Simulation of Bone-Burring
,”
IEEE Trans. Haptics
,
5
(
4
), pp.
344
354
.10.1109/TOH.2011.69
3.
Zilles
,
C.
, and
Salisbury
,
J.
,
1995
, “
A Constraint-Based God-Object Method for Haptic Display
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
IEEE
, Vol.
3
, pp.
146
151
.
4.
Mark
,
W. R.
,
Randolph
,
S. C.
,
Finch
,
M.
,
Van Verth
,
J. M.
, and
Taylor
,
R. M.
, II
,
1996
, “
Adding Force Feedback to Graphics Systems: Issues and Solutions
,”
Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques
,
ACM
, pp.
447
452
.
5.
Colgate
,
J.
, and
Schenkel
,
G.
,
1994
, “
Passivity of a Class of Sampled-Data Systems: Application to Haptic Interfaces
,”
American Control Conference
,
IEEE
, Vol.
3
, pp.
3236
3240
.
6.
Diolaiti
,
N.
,
Niemeyer
,
G.
,
Barbagli
,
F.
, and
Salisbury
,
J.
,
2006
, “
Stability of Haptic Rendering: Discretization, Quantization, Time Delay, and Coulomb Effects
,”
IEEE Trans. Rob.
,
22
(
2
), pp.
256
268
.10.1109/TRO.2005.862487
7.
Gosline
,
A.
,
Campion
,
G.
, and
Hayward
,
V.
,
2006
, “
On the Use of Eddy Current Brakes as Tunable, Fast Turn-On Viscous Dampers for Haptic Rendering
,”
Proceedings of Eurohaptics
, pp.
229
234
.
8.
Mehling
,
J. S.
,
Colgate
,
J. E.
, and
Peshkin
,
M. A.
,
2005
, “
Increasing the Impedance Range of a Haptic Display by Adding Electrical Damping
,”
First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
,
IEEE
, pp.
257
262
.
9.
Janabi-Sharifi
,
F.
,
Hayward
,
V.
, and
Chen
,
C.
,
2000
, “
Discrete-Time Adaptive Windowing for Velocity Estimation
,”
IEEE Trans. Control Syst. Technol.
,
8
(
6
), pp.
1003
1009
.10.1109/87.880606
10.
Hannaford
,
B.
, and
Ryu
,
J.
,
2002
, “
Time-Domain Passivity Control of Haptic Interfaces
,”
IEEE Trans. Rob. Autom.
,
18
(
1
), pp.
1
10
.10.1109/70.988969
11.
Chawda
,
V.
, and
OMalley
,
M.
,
2012
, “
On the Performance of Passivity-Based Control of Haptic Displays Employing Levants Differentiator for Velocity Estimation
,”
IEEE Haptics Symposium
, pp. 415–419.
12.
Mohtat
,
A.
, and
Kövecses
,
J.
,
2013
, “
Energy-Consistent Force Feedback Laws for Virtual Environments
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
3
), p.
031003
.10.1115/1.4023918
13.
Ryu
,
J.
,
Preusche
,
C.
,
Hannaford
,
B.
, and
Hirzinger
,
G.
,
2005
, “
Time Domain Passivity Control With Reference Energy Following
,”
IEEE Trans. Control Syst. Technol.
,
13
(
5
), pp.
737
742
.10.1109/TCST.2005.847336
14.
Lee
,
D.
, and
Huang
,
K.
,
2008
, “
On Passive Non-Iterative Variable-Step Numerical Integration of Mechanical Systems for Haptic Rendering
,”
ASME Dynamic Systems and Control Conference
, pp. 1147–1154.
15.
Brown
,
J.
, and
Colgate
,
J.
,
1998
, “
Minimum Mass for Haptic Display Simulations
,”
ASME Dynamic Systems and Control Division
, pp. 249–256.
16.
Colonnese
,
N.
, and
Okamura
,
A.
,
2012
, “
M-Width: Stability and Accuracy of Haptic Rendering of Virtual Mass
,”
Robotics: Science and Systems VIII
, pp. 41–48.
17.
Kazerooni
,
H.
,
1993
, “
Human Induced Instability in Haptic Interfaces
,”
Advances in Robotics, Mechatronics and Haptic Interfaces, ASME Dynamics Systems and Control Division
, Vol.
49
.
18.
Rahman
,
M.
,
Ikeura
,
R.
, and
Mizutani
,
K.
,
1999
, “
Investigating the Impedance Characteristic of Human Arm for Development of Robots to Co-Operate With Human Operators
,”
IEEE International Conference on Systems, Man, and Cybernetics
,
IEEE
, Vol.
2
, pp.
676
681
.
19.
Lacevic
,
B.
, and
Rocco
,
P.
,
2011
, “
Closed-Form Solution to Controller Design for Human-Robot Interaction
,”
ASME J. Dyn. Syst., Meas., Control
,
133
(
2
), p.
024501
.10.1115/1.4003260
20.
Lee
,
D.
, and
Huang
,
K.
,
2009
, “
Passive Set-Position Modulation Approach for Haptics With Slow, Variable, and Asynchronous Update
,”
EuroHaptics Conference, 2009 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, World Haptics 2009, Third Joint
,
IEEE
, pp.
541
546
.
21.
Kim
,
J.
, and
Ryu
,
J.
,
2010
, “
Robustly Stable Haptic Interaction Control Using an Energy-Bounding Algorithm
,”
Int. J. Rob. Res.
,
29
(
6
), pp.
666
679
.10.1177/0278364909338770
22.
Mohtat
,
A.
, and
Kovecses
,
J.
,
2013
, “
Energy-Consistent Haptic Rendering of Contact Forces
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
IEEE
, pp.
4512
4517
.
23.
Hannaford
,
B.
, and
Okamura
,
A.
,
2008
, “
Haptics
,”
Handbook of Robotics
,
Springer
,
Berlin
, pp.
719
739
.
24.
Shayan-Amin
,
S.
,
2014
, “
Modeling and Analysis of Haptic Mechanical Systems
,” Ph.D. thesis, Department of Mechanical Engineering, McGill University, Montreal.
25.
Ryu
,
J.
,
Kim
,
Y.
, and
Hannaford
,
B.
,
2004
, “
Sampled-and Continuous-Time Passivity and Stability of Virtual Environments
,”
IEEE Trans. Rob.
,
20
(
4
), pp.
772
776
.10.1109/TRO.2004.829453
26.
Mohtat
,
A.
,
2014
, “
Fundamental Challenges in Haptics: Energy Consistency and High-Fidelity Contact Rendering
,” Ph.D. thesis, Department of Mechanical Engineering, McGill University, Montreal.
27.
Ellis
,
R.
,
Sarkar
,
N.
, and
Jenkins
,
M.
,
1997
, “
Numerical Methods for the Force Reflection of Contact
,”
ASME J. Dyn. Syst., Meas., Control
,
119
(
4
), pp.
768
774
.10.1115/1.2802389
28.
Hogan
,
N.
,
1989
, “
Controlling Impedance at the Man/Machine Interface
,”
IEEE International Conference on Robotics and Automation
,
IEEE
, pp.
1626
1631
.
29.
Speich
,
J. E.
,
Shao
,
L.
, and
Goldfarb
,
M.
,
2005
, “
Modeling the Human Hand as it Interacts With a Telemanipulation System
,”
Mechatronics
,
15
(
9
), pp.
1127
1142
.10.1016/j.mechatronics.2005.06.001
30.
Francis
,
B.
, and
Georgiou
,
T.
,
1988
, “
Stability Theory for Linear Time-Invariant Plants With Periodic Digital Controllers
,”
IEEE Trans. Autom. Control
,
33
(
9
), pp.
820
832
.10.1109/9.1310
31.
Levine
,
W.
,
1996
,
The Control Handbook: Control System Fundamentals
,
CRC
,
New York
.
You do not currently have access to this content.