In this work, a new nonlinear guidance law with finite-time convergence considering control loop dynamics is developed to intercept highly maneuvering targets. The approach is based on integral sliding mode combined with finite-time state feedback control. Since terminal guidance process occurs in a short time, the line-of-sight (LOS) angular rate should converge to zero in a finite time. The proposed guidance scheme successively guides the LOS angular rate to converge to zero in a finite-time, and stability and robustness of the new guidance law are demonstrated by means of Lyapunov stability theorem. Three-dimensional simulation results demonstrate the performance of the proposed design procedure.
Issue Section:
Technical Brief
References
1.
Zarchan
, P.
, 2002
, Tactical and Strategic Missile Guidance
(AIAA Series), AIAA
, Reston, VA
.2.
Shneydor
, N. A.
, 1998
, Missile Guidance and Pursuit; Kinematics, Dynamics
, Horwood Publishing
, West Sussex, UK
.3.
Yang
, C. D.
, and Chen
, H. Y.
, 1998
, “Nonlinear H-Infinity Robust Guidance Law for Homing Missiles
,” J. Guid. Control Dyn.
, 21
(6
), pp. 882
–890
.10.2514/2.43214.
Yang
, C. D.
, and Chen
, H. Y.
, 2001
, “Three-Dimensional Nonlinear H-Infinity Guidance Law
,” Int. J. Robust Nonlinear Control
, 11
(5
), pp. 109
–129
.10.1002/rnc.5525.
Moon
, J.
, Kim
, K.
, and Kim
, Y.
, 2001
, “Design of Missile Guidance Law Via Variable Structure Control
,” J. Guid. Control Dyn.
, 24
(4
), pp. 659
–664
.10.2514/2.47926.
Zhou
, D.
, Mu
, C. D.
, and Xu
, W. L.
, 1999
, “Adaptive Sliding-Mode Guidance of a Homing Missile
,” J. Guid. Control Dyn.
, 22
(4
), pp. 589
–594
.10.2514/2.44217.
Brierly
, S. D.
, and Longchamp
, R.
, 1990
, “Application of Sliding Mode Control to Air–Air Interception Problem
,” IEEE Trans. Aerosp. Electron. Syst.
, 26
(2
), pp. 306
–325
.10.1109/7.534608.
Shafiei
, M. H.
, and Binazadeh
, T.
, 2013
, “Application of Partial Sliding Mode in Guidance Problem
,” ISA Trans.
, 52
(2
), pp. 192
–197
.10.1016/j.isatra.2012.11.0059.
Shafiei
, M. H.
, and Binazadeh
, T.
, 2012
, “Partial Stabilization-Based Guidance
,” ISA Trans.
, 51
(1
), pp. 141
–145
.10.1016/j.isatra.2011.08.00710.
Binazadeh
, T.
, and Yazdanpanah
, M. J.
, 2011
, “Partial Stabilization Approach to 3-Dimensional Guidance Law Design
,” ASME J. Dyn. Syst. Meas. Control
, 133
(6
), p. 064504
.10.1115/1.400457511.
Yanushevsky
, R.
, and Boord
, W.
, 2005
, “Lyapunove Approach to Guidance Law Design
,” Nonlinear Anal.
, 63
(5
), pp. 743
–749
.10.1016/j.na.2005.02.04412.
Yanushevsky
, R.
, and Boord
, W.
, 2005
, “New Lyapunove Approach to Guidance Law Design
,” J. Guid. Control Dyn.
, 28
(1
), pp. 162
–166
.10.2514/1.615413.
Yanushevsky
, R.
, 2006
, “Concerning Lyapunov Based Guidance
,” J. Guid. Control Dyn.
, 29
(2
), pp. 509
–511
.10.2514/1.1642214.
Haimo
, V. T.
, 1986
, “Finite Time Controllers
,” SIAM J. Control Optim.
, 24
(4
), pp. 760
–770
.10.1137/032404715.
Hong
, Y. G.
, 2002
, “Finite Time Stabilization and Stability of a Class of Controllable Systems
,” Syst. Control Lett.
, 46
(4
), pp. 231
–236
.10.1016/S0167-6911(02)00119-616.
Levant
, I.
, 2001
, “Universal Single-Input–Single-Output (SISO) Sliding-Mode Controllers With Finite-Time Convergence
,” IEEE Trans. Autom. Control
, 46
(9
), pp. 1447
–1451
.10.1109/9.94847517.
Hong
, Y. G.
, Huang
, J.
, and Xu
, Y. S.
, 2001
, “On an Output Feedback Finite-Time Stabilization Problem
,” IEEE Trans. Autom. Control
, 46
(2
), pp. 305
–309
.10.1109/9.90569918.
Orlov
, Y.
, 2004
, “Finite Time Stability and Robust Control Synthesis of Uncertain Switched Systems
,” SIAM J. Control Optim.
, 43
(4
), pp. 1253
–1271
.10.1137/S036301290342559319.
Ding
, S. H.
, Li
, S. H.
, and Luo
, S.
, 2011
, “Guidance Law Design Based on Continuous Finite-Time Control Technique
,” J. Astronaut.
, 32
(4
), pp. 727
–733
.20.
Zhou
, D.
, Sun
, S.
, and Teo
, K. L.
, 2009
, “Guidance Laws With Finite Time Convergence
,” J. Guid. Control Dyn.
, 32
(6
), pp. 1838
–1846
.10.2514/1.4297621.
Sun
, S.
, Zhou
, D.
, and Hou
, W. T.
, 2013
, “A Guidance Law With Finite Time Convergence Accounting for Autopilot Lag
,” Aerosp. Sci. Technol.
, 25
(1
), pp. 132
–137
.10.1016/j.ast.2011.12.01622.
Golestani
, M.
, Mohammadzaman
, I.
, and Vali
, A. R.
, 2014
, “Finite-Time Convergent Guidance Law Based on Integral Backstepping Control
,” Aerosp. Sci. Technol.
, 39
, pp. 370
–376
.10.1016/j.ast.2014.09.01823.
Barambones
, O.
, Alkorta
, P.
, and Durana
, J.
, 2013
, “Sliding Mode Position Control for Real-Time Control of Induction Motors
,” Int. J. Innovative Comput. Inf. Control
, 9
(7
), pp. 2741
–2754
.24.
Sefriti
, S.
, Boumhidi
, J.
, Benyakhlef
, M.
, and Boumhidi
, I.
, 2013
, “Adaptive Decentralized Sliding Mode Neural Network Control of a Class of Nonlinear Interconnected Systems
,” Int. J. Innovative Comput. Inf. Control
, 9
(7
), pp. 2941
–2947
.25.
Li
, F.
, Wu
, L.
, Shi
, P.
, and Lim
, C. C.
, 2015
, “State Estimation and Sliding-Mode Control for Semi-Markovian Jump Systems With Mismatched Uncertainties
,” Automatica
, 53
, pp. 385
–393
.10.1016/j.automatica.2014.10.06526.
Feng
, C.-C.
, 2011
, Integral Sliding-Based Robust Control, in Recent Advances in Robust Control—Novel Approaches and Design Methods
, InTechOpen
, Rijeka, Croatia
.27.
Sang
, B.
, Jiang
, C.
, and Qian
, C.
, 2008
, “An Integral Sliding Mode Terminal Guidance Law Based on Trajectory Linearization Control for Space Interception System
,” Chinese Control and Decision Conference
, Yantai, China, pp. 3790
–3794
.28.
Zhang
, X.
, Feng
, G.
, and Sun
, Y.
, 2012
, “Finite-Time Stabilization by State Feedback Control for a Class of Time-Varying Nonlinear Systems
,” Automatica
, 48
(3
), pp. 499
–504
.10.1016/j.automatica.2011.07.01429.
Yang
, C. D.
, and Yang
, C. C.
, 1996
, “Analytical Solution of Three-Dimensional Realistic True Proportional Navigation
,” J. Guid. Control Dyn.
, 19
(3
), pp. 569
–577
.10.2514/3.21659Copyright © 2015 by ASME
You do not currently have access to this content.