In this work, a new nonlinear guidance law with finite-time convergence considering control loop dynamics is developed to intercept highly maneuvering targets. The approach is based on integral sliding mode combined with finite-time state feedback control. Since terminal guidance process occurs in a short time, the line-of-sight (LOS) angular rate should converge to zero in a finite time. The proposed guidance scheme successively guides the LOS angular rate to converge to zero in a finite-time, and stability and robustness of the new guidance law are demonstrated by means of Lyapunov stability theorem. Three-dimensional simulation results demonstrate the performance of the proposed design procedure.

References

1.
Zarchan
,
P.
,
2002
,
Tactical and Strategic Missile Guidance
(AIAA Series),
AIAA
,
Reston, VA
.
2.
Shneydor
,
N. A.
,
1998
,
Missile Guidance and Pursuit; Kinematics, Dynamics
,
Horwood Publishing
,
West Sussex, UK
.
3.
Yang
,
C. D.
, and
Chen
,
H. Y.
,
1998
, “
Nonlinear H-Infinity Robust Guidance Law for Homing Missiles
,”
J. Guid. Control Dyn.
,
21
(
6
), pp.
882
890
.10.2514/2.4321
4.
Yang
,
C. D.
, and
Chen
,
H. Y.
,
2001
, “
Three-Dimensional Nonlinear H-Infinity Guidance Law
,”
Int. J. Robust Nonlinear Control
,
11
(
5
), pp.
109
129
.10.1002/rnc.552
5.
Moon
,
J.
,
Kim
,
K.
, and
Kim
,
Y.
,
2001
, “
Design of Missile Guidance Law Via Variable Structure Control
,”
J. Guid. Control Dyn.
,
24
(
4
), pp.
659
664
.10.2514/2.4792
6.
Zhou
,
D.
,
Mu
,
C. D.
, and
Xu
,
W. L.
,
1999
, “
Adaptive Sliding-Mode Guidance of a Homing Missile
,”
J. Guid. Control Dyn.
,
22
(
4
), pp.
589
594
.10.2514/2.4421
7.
Brierly
,
S. D.
, and
Longchamp
,
R.
,
1990
, “
Application of Sliding Mode Control to Air–Air Interception Problem
,”
IEEE Trans. Aerosp. Electron. Syst.
,
26
(
2
), pp.
306
325
.10.1109/7.53460
8.
Shafiei
,
M. H.
, and
Binazadeh
,
T.
,
2013
, “
Application of Partial Sliding Mode in Guidance Problem
,”
ISA Trans.
,
52
(
2
), pp.
192
197
.10.1016/j.isatra.2012.11.005
9.
Shafiei
,
M. H.
, and
Binazadeh
,
T.
,
2012
, “
Partial Stabilization-Based Guidance
,”
ISA Trans.
,
51
(
1
), pp.
141
145
.10.1016/j.isatra.2011.08.007
10.
Binazadeh
,
T.
, and
Yazdanpanah
,
M. J.
,
2011
, “
Partial Stabilization Approach to 3-Dimensional Guidance Law Design
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
6
), p.
064504
.10.1115/1.4004575
11.
Yanushevsky
,
R.
, and
Boord
,
W.
,
2005
, “
Lyapunove Approach to Guidance Law Design
,”
Nonlinear Anal.
,
63
(
5
), pp.
743
749
.10.1016/j.na.2005.02.044
12.
Yanushevsky
,
R.
, and
Boord
,
W.
,
2005
, “
New Lyapunove Approach to Guidance Law Design
,”
J. Guid. Control Dyn.
,
28
(
1
), pp.
162
166
.10.2514/1.6154
13.
Yanushevsky
,
R.
,
2006
, “
Concerning Lyapunov Based Guidance
,”
J. Guid. Control Dyn.
,
29
(
2
), pp.
509
511
.10.2514/1.16422
14.
Haimo
,
V. T.
,
1986
, “
Finite Time Controllers
,”
SIAM J. Control Optim.
,
24
(
4
), pp.
760
770
.10.1137/0324047
15.
Hong
,
Y. G.
,
2002
, “
Finite Time Stabilization and Stability of a Class of Controllable Systems
,”
Syst. Control Lett.
,
46
(
4
), pp.
231
236
.10.1016/S0167-6911(02)00119-6
16.
Levant
,
I.
,
2001
, “
Universal Single-Input–Single-Output (SISO) Sliding-Mode Controllers With Finite-Time Convergence
,”
IEEE Trans. Autom. Control
,
46
(
9
), pp.
1447
1451
.10.1109/9.948475
17.
Hong
,
Y. G.
,
Huang
,
J.
, and
Xu
,
Y. S.
,
2001
, “
On an Output Feedback Finite-Time Stabilization Problem
,”
IEEE Trans. Autom. Control
,
46
(
2
), pp.
305
309
.10.1109/9.905699
18.
Orlov
,
Y.
,
2004
, “
Finite Time Stability and Robust Control Synthesis of Uncertain Switched Systems
,”
SIAM J. Control Optim.
,
43
(
4
), pp.
1253
1271
.10.1137/S0363012903425593
19.
Ding
,
S. H.
,
Li
,
S. H.
, and
Luo
,
S.
,
2011
, “
Guidance Law Design Based on Continuous Finite-Time Control Technique
,”
J. Astronaut.
,
32
(
4
), pp.
727
733
.
20.
Zhou
,
D.
,
Sun
,
S.
, and
Teo
,
K. L.
,
2009
, “
Guidance Laws With Finite Time Convergence
,”
J. Guid. Control Dyn.
,
32
(
6
), pp.
1838
1846
.10.2514/1.42976
21.
Sun
,
S.
,
Zhou
,
D.
, and
Hou
,
W. T.
,
2013
, “
A Guidance Law With Finite Time Convergence Accounting for Autopilot Lag
,”
Aerosp. Sci. Technol.
,
25
(
1
), pp.
132
137
.10.1016/j.ast.2011.12.016
22.
Golestani
,
M.
,
Mohammadzaman
,
I.
, and
Vali
,
A. R.
,
2014
, “
Finite-Time Convergent Guidance Law Based on Integral Backstepping Control
,”
Aerosp. Sci. Technol.
,
39
, pp.
370
376
.10.1016/j.ast.2014.09.018
23.
Barambones
,
O.
,
Alkorta
,
P.
, and
Durana
,
J.
,
2013
, “
Sliding Mode Position Control for Real-Time Control of Induction Motors
,”
Int. J. Innovative Comput. Inf. Control
,
9
(
7
), pp.
2741
2754
.
24.
Sefriti
,
S.
,
Boumhidi
,
J.
,
Benyakhlef
,
M.
, and
Boumhidi
,
I.
,
2013
, “
Adaptive Decentralized Sliding Mode Neural Network Control of a Class of Nonlinear Interconnected Systems
,”
Int. J. Innovative Comput. Inf. Control
,
9
(
7
), pp.
2941
2947
.
25.
Li
,
F.
,
Wu
,
L.
,
Shi
,
P.
, and
Lim
,
C. C.
,
2015
, “
State Estimation and Sliding-Mode Control for Semi-Markovian Jump Systems With Mismatched Uncertainties
,”
Automatica
,
53
, pp.
385
393
.10.1016/j.automatica.2014.10.065
26.
Feng
,
C.-C.
,
2011
,
Integral Sliding-Based Robust Control, in Recent Advances in Robust Control—Novel Approaches and Design Methods
,
InTechOpen
,
Rijeka, Croatia
.
27.
Sang
,
B.
,
Jiang
,
C.
, and
Qian
,
C.
,
2008
, “
An Integral Sliding Mode Terminal Guidance Law Based on Trajectory Linearization Control for Space Interception System
,”
Chinese Control and Decision Conference
, Yantai, China, pp.
3790
3794
.
28.
Zhang
,
X.
,
Feng
,
G.
, and
Sun
,
Y.
,
2012
, “
Finite-Time Stabilization by State Feedback Control for a Class of Time-Varying Nonlinear Systems
,”
Automatica
,
48
(
3
), pp.
499
504
.10.1016/j.automatica.2011.07.014
29.
Yang
,
C. D.
, and
Yang
,
C. C.
,
1996
, “
Analytical Solution of Three-Dimensional Realistic True Proportional Navigation
,”
J. Guid. Control Dyn.
,
19
(
3
), pp.
569
577
.10.2514/3.21659
You do not currently have access to this content.