This paper deals with the problem of joint state and parameter estimation based on a set adaptive observer design. The problem is formulated and solved for an LPV (linear parameter-varying) system. The resolution methodology avoids the exponential complexity obstruction usually encountered in the set-membership parameter estimation. A simulation example is presented to illustrate the efficiency of the proposed approach.

References

1.
Besançon
,
G.
, ed.,
2007
,
Nonlinear Observers and Applications
(Lecture Notes in Control and Inforamtion Science), Vol.
363
,
Springer Verlag
,
Berlin
.
2.
Nijmeijer
,
H.
, and
Fossen
,
T. I.
,
1999
,
New Directions in Nonlinear Observer Design
,
Springer-Verlag
,
London
.
3.
Bokor
,
J.
, and
Balas
,
G.
,
2004
, “
Detection Filter Design for LPV Systems—A Geometric Approach
,”
Automatica
,
40
, pp.
511
518
.10.1016/j.automatica.2003.11.003
4.
Javad
,
M.
, and
Carsten
,
S. W.
, eds.,
2012
,
Control of Linear Parameter Varying Systems With Applications
,
Springer
,
New York.
5.
Lee
,
L. H.
,
1997
, “
Identification and Robust Control of Linear Parameter-Varying Systems
,” Ph.D. thesis,
University of California at Berkeley
,
Berkeley, California
.
6.
dos Santos
,
P. L.
,
Perdicoúlis
,
T. P. A.
,
Novara
,
C.
,
Ramos
,
J. A.
, and
Rivera
,
D. E.
, eds.,
2011
,
Linear Parameter-Varying System Identification: New Developments and Trends
(Advanced Series in Electrical and Computer Engineering), Vol.
14
,
World Scientific
,
Singapore
.
7.
Marcos
,
A.
, and
Balas
,
J.
,
2004
, “
Development of Linear-Parameter-Varying Models for Aircraft
,”
J. Guid. Control Dyn.
,
27
(
2
), pp.
218
228
.10.2514/1.9165
8.
Shamma
,
J.
, and
Cloutier
,
J.
,
1993
, “
Gain-Scheduled Missile Autopilot Design Using Linear Parameter-Varying Transformations
,”
J. Guid. Control Dyn.
,
16
(
2
), pp.
256
261
.10.2514/3.20997
9.
Tan
,
W.
,
1997
, “
Applications of Linear Parameter-Varying Control Theory
,” Ph.D. thesis,
Department of Mechanical Engineering, University of California at Berkeley
, Berkeley, CA.
10.
Jaulin
,
L.
,
2002
, “
Nonlinear Bounded-Error State Estimation of Continuous Time Systems
,”
Automatica
,
38
(
2
), pp.
1079
1082
.10.1016/S0005-1098(01)00284-9
11.
Raïssi
,
T.
,
Ramdani
,
N.
, and
Candau
,
Y.
,
2004
, “
Set Membership State and Parameter Estimation for Systems Described by Nonlilear Differential Equations
,”
Automatica
,
40
, pp.
1771
1777
.10.1016/j.automatica.2004.05.006
12.
Kieffer
,
M.
, and
Walter
,
E.
,
2004
, “
Guaranteed Nonlinear State Estimator for Cooperative Systems
,”
Numer. Algorithms
,
37
, pp.
187
198
.10.1023/B:NUMA.0000049466.96588.a6
13.
Müller
,
M.
,
1920
, “
Überdas Fundamental Theorem in der Theorie der Gewöhnlichen Differentialgleichungen
,”
Math. Z
,
26
, pp.
619
645
.10.1007/BF01475477
14.
Bernard
,
O.
, and
Gouzé
,
J. L.
,
2004
, “
Closed Loop Observers Bundle for Uncertain Biotechnological Models
,”
J. Process Control
,
14
, pp.
765
774
.10.1016/j.jprocont.2003.12.006
15.
Gouzé
,
J. L.
,
Rapaport
,
A.
, and
Hadj-Sadok
,
M. Z.
,
2000
, “
Interval Observers for Uncertain Biological Systems
,”
Ecol. Model.
,
133
, pp.
46
56
.
16.
Mazenc
,
F.
, and
Bernard
,
O.
,
2011
, “
Interval Observers for Linear Time-Invariant Systems With Disturbances
,”
Automatica
,
47
(
1
), pp.
140
147
.10.1016/j.automatica.2010.10.019
17.
Raïssi
,
T.
,
Videau
,
G.
, and
Zolghadri
,
A.
,
2010
, “
Interval Observers Design for Consistency Checks of Nonlinear Continuous-Time Systems
,”
Automatica
,
46
(
3
), pp.
518
527
.10.1016/j.automatica.2009.12.005
18.
Jaulin
,
L.
, and
Walter
,
E.
,
1993
, “
Set Inversion via Interval Analysis for Nonlinear Bounded-Error Estimation
,”
Automatica
,
29
(
4
), pp.
1053
1064
.10.1016/0005-1098(93)90106-4
19.
Johnson
,
T.
, and
Tucker
,
W.
,
2008
, “
Rigorous Parameter Reconstruction for Differential Equations With Noisy Data
,”
Automatica
,
44
(
9
), pp.
2422
2426
.10.1016/j.automatica.2008.01.032
20.
Efimov
,
D.
,
2006
, “
Dynamical Adaptive Synchronization
,”
Int. J. Adapt. Control Signal Process.
,
20
(
9
), pp.
491
507
.10.1002/acs.914
21.
Farza
,
M.
,
M'Saad
,
M.
,
Maatoug
,
T.
, and
Kamoun
,
M.
,
2009
, “
Adaptive Observers for Nonlinearly Parameterized Class of Nonlinear Systems
,”
Automatica
,
45
(
10
), pp.
2292
2299
.10.1016/j.automatica.2009.06.008
22.
Stamnes
,
Ø. N.
,
Aamo
,
O. M.
, and
Kaasa
,
G.-O.
,
2011
, “
Redesign of Adaptive Observers for Improved Parameter Identification in Nonlinear Systems
,”
Automatica
,
47
(
2
), pp.
403
410
.10.1016/j.automatica.2010.11.005
23.
Xu
,
A.
, and
Zhang
,
Q.
,
2004
, “
Residual Generation for Fault Diagnosis in Linear Time-Varying Systems
,”
IEEE Trans. Autom. Control
,
49
(
5
), pp.
767
772
.10.1109/TAC.2004.825983
24.
Zemouche
,
A.
, and
Boutayeb
,
M.
,
2009
, “
A Unified Adaptive Observer Synthesis Method for a Class of Systems With Both Lipschitz and Monotone Nonlinearities
,”
Syst. Control Lett.
,
58
(
4
), pp.
282
288
.10.1016/j.sysconle.2008.11.007
25.
Zhang
,
Q.
,
2002
, “
Adaptive Observer for Multiple-Input-Multiple-Output Linear Time Varying Systems
,”
IEEE Trans. Autom. Control
,
47
(
3
), pp.
525
529
.10.1109/9.989154
26.
Smith
,
H. L.
,
1995
,
Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems
, Vol.
41
,
Surveys and Monographs, AMS
,
Providence
, RI.
27.
Anderson
,
B. D. O.
,
1977
, “
Exponential Stability of Linear Equations Arising in Adaptive Identification
,”
IEEE Trans. Autom. Control
,
22
, pp.
83
88
.10.1109/TAC.1977.1101406
28.
Yuan
,
J. S.-C.
, and
Wonham
,
W. M.
,
1977
, “
Probing Signals for Model Reference Identification
,”
IEEE Trans. Autom. Control
,
22
, pp.
530
538
.10.1109/TAC.1977.1101556
29.
Sanders
,
J.
,
Verhulst
,
F.
, and
Murdock
,
J.
,
2007
,
Averaging Methods in Nonlinear Dynamical Systems
,
Springer
,
New York
.
30.
Raïssi
,
T.
,
Efimov
,
D.
, and
Zolghadri
,
A.
,
2012
, “
Interval State Estimation for a Class of Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
57
(
1
), pp.
260
265
.10.1109/TAC.2011.2164820
31.
Bogoliubov
,
N. N.
, and
Mitropolskii
,
Yu, A.
,
1961
,
Asymptotic Methods in the Theory of Nonlinear Oscillations
,
Gordon and Breach
,
New York
.
32.
Blanke
,
M.
,
Kinnaert
,
M.
,
Lunze
,
J.
, and
Staroswiecki
,
M.
,
2006
,
Diagnosis and Fault Tolerant Control
,
Springer-Verlag
,
Berlin
, 2nd ed.
33.
Chen
,
J.
, and
Patton
,
R. J.
,
1999
,
Robust Model-Based Fault Diagnosis for Dynamic Systems
,
Kluwer Academic Publishers
, London.
34.
Ferrari
,
R.
,
Parisini
,
T.
, and
Polycarpou
,
M. M.
,
2009
, “
Distributed Fault Diagnosis With Overlapping Decompositions: An Adaptive Approximation Approach
,”
IEEE Trans. Autom. Control
,
54
(
4
), pp.
794
799
.10.1109/TAC.2008.2009591
35.
Puig
,
V.
,
2010
, “
Fault Diagnosis and Fault Tolerant Control Using Set–Membership Approaches: Application to Real Case Studies
,”
Int. J. Appl. Math. Comput. Sci.
,
20
(
4
), pp.
619
635
.10.2478/v10006-010-0046-y
36.
Rosa
,
P.
,
Silvestre
,
C.
,
Shamma
,
J. S.
, and
Athans
,
M.
,
2010
, “
Fault Detection and Isolation of LTV Systems Using Set-Valued Observers
,”
Proceedings of 49th IEEE Conference on Decision and Control
, Atlanta, pp.
768
773
.
37.
Ding
,
S. X.
,
2008
,
Model-Based Fault Diagnosis Techniques. Design Schemes, Algorithms, and Tools
,
Springer, Heidelberg
,
Berlin
.
38.
Blesa
,
J.
,
Puig
,
V.
, and
Bolea
,
Y.
,
2010
, “
Fault Detection Using Interval LPV Models in an Open-Flow Canal
,”
Control Eng. Pract.
,
18
(
5
), pp.
460
470
.10.1016/j.conengprac.2010.01.002
39.
Join
,
C.
,
Sira-Ramirez
,
H.
, and
Fliess
,
M.
,
2005
, “
Control of an Uncertain Three Tank System via On-Line Parameter Identification and Fault Detection
,”
Proceedings of 16th IFAC World Congress
,
Prague
.
40.
Theilliol
,
D.
,
Noura
,
H.
, and
Ponsart
,
J.-C.
,
2002
, “
Fault Diagnosis and Accommodation of a Three-Tank System Based on Analytical Redundancy
,”
ISA Trans.
,
41
, pp.
365
382
.10.1016/S0019-0578(07)60094-9
41.
Zolghadri
,
A.
,
Henry
,
D.
, and
Monsion
,
M.
,
1996
, “
Design of Nonlinear Observers for Fault Diagnosis: A Case Study
,”
Control Eng. Pract.
,
4
(
11
), pp.
1535
1544
.10.1016/0967-0661(96)00167-0
You do not currently have access to this content.