This paper describes an H control method for controlling hysteresis in a piezoelectric stack actuator. The actuator used is a high-performance monolithic multilayer piezoelectric stack actuator. The proposed control method involves the use of a capacitor in series with the piezoelectric actuator to provide a measured output voltage which is proportional to the charge on the piezoelectric actuator. The controller is designed based on a model of the hysteresis nonlinearity constructed using experimental data. The parameters in the nonlinear model of the system are obtained from the measurements on the piezoelectric actuator circuit. Our focus in this paper is to develop a tracking controller based on a charge output of the piezoelectric actuator system and to reduce the hysteresis nonlinearity. The paper considers a robust H tracking controller to control the piezoelectric actuator based on an uncertain system model. Experimental results show that the hysteresis can be significantly reduced and the measured output can closely track a 5 Hz sawtooth reference input signal when the H controller is used.

References

1.
Croft
,
D.
,
Shedd
,
G.
, and
Devasia
,
S.
,
2000
, “
Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application
,”
Proceedings of American Control Conference ACC’00
, Vol.
3
, pp.
2123
2128
.
2.
Leang
,
K.
, and
Devasia
,
S.
,
2006
, “
Design of Hysteresis-Compensating Iterative Learning Control for Piezo-Positioners: Application to Atomic Force Microscopes
,”
Mechatronics
,
16
(
3–4
), pp.
141
158
.10.1016/j.mechatronics.2005.11.006
3.
Goldfarb
,
M.
, and
Celanovic
,
N.
,
1997
, “
Modeling Piezoelectric Stack Actuators for Control of Micromanipulation
,”
IEEE Control Syst. Mag.
,
17
(
3
), pp.
69
79
.10.1109/37.588158
4.
Sebastian
,
A.
, and
Salapaka
,
S.
,
2005
, “
Design Methodologies for Robust Nano-Positioning
,”
IEEE Trans. Control Syst. Technol.
,
13
(
6
), pp.
868
876
.10.1109/TCST.2005.854336
5.
Ru
,
C.
, and
Sun
,
L.
,
2005
, “
Improving Positioning Accuracy of Piezoelectric Actuators by Feedforward Hysteresis Compensation Based on a New Mathematical Model
,”
Rev. Sci. Instrum.
,
76
(
9
), p.
095111
.10.1063/1.2052047
6.
Jung
,
H.
,
Shim
,
J.
, and
Gweon
,
D.
,
2001
, “
Tracking Control of Piezoelectric Actuators
,”
Nanotechnology
,
12
(
1
), pp.
14
20
.10.1088/0957-4484/12/1/304
7.
Banning
,
R.
,
de Koning
,
W.
,
Adriaens
,
H.
, and
Koops
,
R.
,
2001
, “
State-Space Analysis and Indentification for a Class of Hysteresis Systems
,”
Automatica
,
37
, pp.
1883
1892
.10.1016/S0005-1098(01)00157-1
8.
Fleming
,
A.
, and
Moheimani
,
R.
,
2005
, “
A Grounded-Load Charge Amplifier for Reducing Hysteresis in Piezoelectric Tube Scanners
,”
Rev. Sci. Instrum.
,
76
(
7
), p.
073707
.10.1063/1.1938952
9.
Furutaniy
,
K.
,
Urushibata
,
M.
, and
Mohri
,
N.
,
1998
, “
Displacement Control of Piezoelectric Element by Feedback of Induced Charge
,”
Nanotechnology
,
9
, pp.
93
98
.10.1088/0957-4484/9/2/009
10.
Moheimani
,
R.
, and
Vautier
,
B.
,
2005
, “
Resonant Control of Structural Vibration Using Charge-Driven Piezoelectric Actuators
,”
IEEE Trans. Control Syst. Technol.
,
13
(
6
), pp.
1021
1035
.10.1109/TCST.2005.857407
11.
Jang
,
M.
,
Chen
,
C.
, and
Lee
,
J.
,
2009
, “
Modeling and Control of a Piezoelectric Actuator Driven System With Asymmetric Hysteresis
,”
J. Franklin Inst.
,
346
, pp.
17
32
.10.1016/j.jfranklin.2008.06.005
12.
Adriaens
,
H.
,
de Koning
,
W.
, and
Banning
,
R.
,
2000
, “
Modeling Piezoelectric Actuators
,”
IEEE/ASME Trans. Mech.
,
5
(
4
), pp.
331
341
.10.1109/3516.891044
13.
Xie
,
L.
,
Fu
,
M.
, and
de Souza
,
C.
,
1992
, “
H∞ Control and Quadratic Stabilization of Systems With Parameter Uncertainty via Output Feedback
,”
IEEE Trans. Autom. Control
,
37
(
8
), pp.
1253
1256
.10.1109/9.151120
14.
Xie
,
L.
, and
de Souza
,
C.
,
1992
, “
Robust H∞ Control for Linear Systems With Norm-Bounded Time-Varying Uncertainty
,”
IEEE Trans. Autom. Control
,
37
(
8
), pp.
1188
1191
.10.1109/9.151101
15.
Petersen
,
I.
,
Anderson
,
B.
, and
Jonckeere
,
E.
,
1991
, “
A First Principles Solution to the Non-Singular H∞ Control Problem
,”
Int. J. Robust Nonlinear Control
,
1
(
3
), pp.
171
185
.10.1002/rnc.4590010304
16.
Chuang
,
N.
,
Petersen
,
I.
, and
Pota
,
H.
,
2011
, “
Robust H∞ Control in Fast Atomic Force Microscopy
,”
Proceedings of IEEE American Control Conference ACC’11
, pp.
2258
2265
.
17.
Fleming
,
A.
,
2011
, “
Dual-Stage Vertical Feedback for High-Speed Scanning Probe Microscopy
,”
IEEE Trans. Control Syst. Technol.
,
19
(
1
), pp.
156
165
.10.1109/TCST.2010.2040282
18.
Zhou
,
K.
,
Doyle
,
J.
, and
Glover
,
K.
,
1996
,
Robust and Optimal Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
19.
Green
,
M.
, and
Limebeer
,
D.
,
1995
,
Linear Robust Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
20.
Baser
,
T.
, and
Bernhard
,
P.
,
1995
,
H∞ Optimal Control and Related Minimax Design Problem: A Dynamic Game Approach
,
Birhauser
,
Boston, MA
.
You do not currently have access to this content.