The time-optimal output transition control problem for stable or marginally stable systems with minimum-phase zeros is discussed in this paper. A double integrator system with a real left-half plane zero is used to illustrate the development of the time-optimal output transition controller. It is shown that an exponentially decaying postactuation control profile is necessary to maintain the output at the desired final location. It is shown that the resulting solution to the output transition time-optimal control profile can be generated by a time-delay filter whose zeros and poles cancels the poles and zeros of the system to be controlled. The design of the time-optimal output transition problem is generalized and illustrated on the benchmark floating oscillator problem.

References

1.
Devasia
,
S.
,
2012
, “
Time-Optimal Control With Pre/Post Actuation for Dual-Stage Systems
,”
IEEE Trans. Control Syst. Technol.
,
20
(
2
), pp.
323
334
.10.1109/TCST.2011.2174153
2.
Stearns
,
H.
,
Yu
,
S.
,
Fine
,
B.
,
Mishra
,
S.
, and
Tomizuka
,
M.
,
2008
, “
A Comparative Study of Feedforward Tuning Methods for Wafer Scanning Systems
,”
ASME Conf. Proc.
,
2008
(
43352
), pp.
669
676
.
3.
Singhose
,
W.
, and
Vaughan
,
J.
,
2011
, “
Reducing Vibration by Digital Filtering and Input Shaping
,”
IEEE Trans. Control Syst. Technol.
,
19
(
6
), pp.
1410
1420
.10.1109/TCST.2010.2093135
4.
Singh
,
T.
, and
Vadali
,
S. R.
,
1993
, “
Input-Shaped Control of Three-Dimensional Maneuvers of Flexible Spacecraft
,”
J. Guid. Control Dyn.
,
16
(
6
), pp.
1061
1068
.10.2514/3.21128
5.
Singer
,
N.
, and
Seering
,
W. P.
,
1990
, “
Pre-Shaping Command Inputs to Reduce System Vibration
,”
ASME J. Dyn. Syst., Meas. Control
,
112
(
1
), pp.
76
82
.10.1115/1.2894142
6.
Singh
,
T.
, and
Vadali
,
S. R.
,
1993
, “
Robust Time Delay Control
,”
ASME J. Dyn. Syst., Meas. Control
,
115
(
2
), pp.
303
306
.10.1115/1.2899035
7.
Singhose
,
W.
,
Derezinski
,
S.
, and
Singer
,
N.
,
1996
, “
Extra-Insensitive Input Shapers for Controlling Flexible Spacecraft
,”
J. Guid. Control Dyn.
,
19
(
2
), pp.
385
391
.10.2514/3.21630
8.
Singh
,
T.
,
2002
, “
Minimax Design of Robust Controllers for Flexible Systems
,”
J. Guid. Control Dyn.
,
25
(
5
), pp.
868
875
.10.2514/2.4980
9.
Singh
,
T.
,
2004
, “
Jerk Limited Input Shapers
,”
ASME J. Dyn. Syst., Meas. Control
,
126
(
1
), pp.
215
219
.10.1115/1.1653808
10.
Junkins
,
J. L.
,
Rahman
,
Z. H.
, and
Bang
,
H.
,
1991
, “
Near-Minimum-Time Maneuvers of Flexible Structures by Parameter Optimization
,”
J. Guid. Control Dyn.
,
14
(
2
), pp.
406
415
.10.2514/3.20653
11.
Dijkstra
,
B.
, and
Bosgra
,
O.
,
2003
, “
Exploiting Iterative Learning Control for Input Shaping, With Application to a Wafer Stage
,”
American Control Conference, Proceedings of the 2003
, Vol.
6
, pp.
4811
4815
.
12.
Bodson
,
M.
,
1997
, “
An Adaptive Algorithm for the Tuning of Two Input Shaping Methods
,”
American Control Conference, Proceedings of the 1997
, Vol.
3
, pp.
1340
1344
.
13.
Singh
,
G.
,
Kabamba
,
P. T.
, and
McClamroch
,
N. H.
,
1989
, “
Planar Time-Optimal Control, Rest-to-Rest Slewing of Flexible Spacecraft
,”
J. Guid. Control Dynamics
,
12
(
1
), pp.
71
81
.10.2514/3.20370
14.
Ben-Asher
,
J.
,
Burns
,
J. A.
, and
Cliff
,
E. M.
,
1992
, “
Time-Optimal Slewing of Flexible Spacecraft
,”
J. Guid. Control Dyn.
,
15
(
2
), pp.
360
367
.10.2514/3.20844
15.
Singh
,
T.
, and
Vadali
,
S. R.
,
1994
, “
Robust Time-Optimal Control: Frequency Domain Approach
,”
J. Guid. Control Dyn.
,
17
(
2
), pp.
346
353
.10.2514/3.21204
16.
Wie
,
B.
,
Sinha
,
R.
,
Sunkel
,
J.
, and
Cox
,
K.
,
1993
, “
Robust Fuel- and Time-Optimal Control of Uncertain Flexible Space Strcutures
,”
Guidance, Dynamics and Control Conference
.
17.
Singh
,
T.
,
1995
, “
Fuel/Time Optimal Control of the Benchmark Problem
,”
J. Guid. Control Dyn.
,
18
(
6
), pp.
1225
1231
.10.2514/3.21534
18.
Muenchhof
,
M.
, and
Singh
,
T.
,
2003
, “
Jerk Limited Time Optimal Control of Flexible Structures
,”
ASME J. Dyn. Syst., Meas. Control
,
125
(
1
), pp.
139
142
.10.1115/1.1543552
19.
Ben-Itzak
,
S.
, and
Karniel
,
A.
,
2008
, “
Minimum Acceleration Criterion With Constraints Implies Bang-Bang Control as an Underlying Principle for Optimal Trajectories of Arm Reaching Movements
,”
Neural Comput.
,
20
, pp.
779
812
.10.1162/neco.2007.12-05-077
20.
Iamratanakul
,
D.
,
Jordan
,
B.
,
Leang
,
K.
, and
Devasia
,
S.
,
2008
, “
Optimal Output Transitions for Dual-Stage Systems
,”
IEEE Trans. Control Syst. Technol.
,
16
(
5
), pp.
869
881
.10.1109/TCST.2007.916331
21.
Iamratanakul
,
D.
, and
Devasia
,
S.
,
2008
, “
Feedforward Input Design for Minimum-Time/Energy, Output Transitions for Dual-Stage Systems
,”
American Control Conference
, pp.
3263
3268
.
22.
Devasia
,
S.
,
2012
, “
Time-Optimal Control With Pre/Post Actuation for Dual-Stage Systems
,”
IEEE Trans. Control Syst. Technol.
,
20
(
2
), pp.
323
334
.10.1109/TCST.2011.2174153
23.
Singh
,
T.
,
1996
, “
Effect of Damping on the Structure of Time-Optimal Controllers
,”
J. Guid. Control Dyn.
,
19
(
5
), pp.
1182
1184
.10.2514/3.21762
You do not currently have access to this content.