Cable transmission has significant advantages in the development of a surgical robot which is fully magnetic resonance imaging (MRI) compatible and can work dexterously in the very limited space inside MRI core. However, apart from the nonlinearities due to friction and cable compliance present in the traditional steel cables, the MRI compatible polymeric cables also suffer from the significant viscoelastic behavior. Previous work in cable-conduit actuation modeling only addresses the transmission in elastic cables and ignores complex direction and time dependent nonlinear viscoelastic behavior of cable-conduits. These effects need to be characterized for system design and nonlinearity compensation. In this paper, an analytical model using standard linear solid model and Coulomb friction is developed to study the transmission characteristics of such a system. The model has been validated by experiments using dyneema cables passing through PEEK conduits, predicting motion and torque transmission with error levels of 3.38% and 16.16%, respectively. The effect of cable viscoelasticity is studied utilizing the model, and corresponding results are compared with that of an elastic cable.

References

1.
Guthart
,
G. S.
, and
Salisbury
,
J. K.
,
2000
, “
The Intuitive Telesurgery System: Overview and Application
,” Proc.
IEEE
Int. Conf. Robotics and Automation,
San Francisco, CA
, April, pp.
618
621
.10.1109/ROBOT.2000.844121
2.
Fanzino
,
R. J.
,
2003
, “
The Laprotek Surgical System and the Next Generation of Robotics
,”
Surg. Clin. North Am.
,
83
(
6
), pp.
1317
1320
.10.1016/S0039-6109(03)00171-3
3.
Lotti
,
F.
, and
Vassura
,
G.
,
2002
, “
A Novel Approach to Mechanical Design of Articulated Fingers for Robotic Hands
,” Proc.
IEEE
/RSJ Int. Conf. Intelligent Robots and Systems,
Lausanne, Switzerland
, October, pp.
1687
1692
.10.1109/IRDS.2002.1043998
4.
Nahvi
,
A.
,
Hollerbach
,
J. M.
,
Xu
,
Y.
, and
Hunter
,
I. W.
, 1994, “
Investigation of the Transmission System of a Tendon Driven Robot Hand
,” Proc.
IEEE
Int. Conf. Intelligent Robots and Systems,
Munich, Germany
, September, Vol. 1, pp.
202
208
.10.1109/IROS.1994.407390
5.
Veneman
,
J. F.
,
Ekkelenkamp
,
R.
,
Kruidhof
,
R.
,
van der Helm
,
F. C. T.
,
van der Kooij
,
H.
, 2006, “
A Series Elastic- and Bowden-Cable-Based Actuation System for Use as Torque Actuator in Exoskeleton-Type Robots
,”
Int. J. Robotics Res.
,
25
(
3
), pp.
261
281
.10.1177/0278364906063829
6.
Damiano
,
R. J.
,
Tabaie
,
H. A.
,
Mack
,
M. J.
,
Edgerton
,
J. R.
,
Mullangi
,
C.
,
Graper
,
W. P.
, and Prasad, S. M., 2001, “
Initial Prospective Multicenter Clinical Trial of Robotically-Assisted Coronary Artery Bypass Grafting
,”
Ann. Thorac. Surgery
,
72
(
4
), pp.
1263
1269
.10.1016/S0003-4975(01)02980-0
7.
Mack
,
M. J.
,
2001
, “
Minimally Invasive and Robotic Surgery
,”
JAMA
,
285
(
5
), pp.
568
572
.10.1001/jama.285.5.568
8.
Schauer
,
P.
,
Chand
,
B.
, and
Brethauer
,
S.
,
2007
, “
New Applications for Endoscopy: The Emerging Field of Endoluminal and Transgastric Bariatric Surgery
,”
Surg. Endosc.
,
21
, pp.
347
356
.10.1007/s00464-006-9008-8
9.
McGee
,
M. F.
,
Rosen
,
M. J.
,
Marks
,
J.
,
Onders
,
R. P.
,
Chak
,
A.
,
Faulx
,
A.
,
Chen
,
V. K.
, and
Ponsky
,
J.
,
2006
, “
A Primer on Natural Orifice Transluminal Endoscopic Surgery: Building a New Paradigm
,”
Surg. Innov.
,
13
(
2
), pp.
86
93
.10.1177/1553350606290529
10.
Howe
,
R. D.
, and
Matsuoka
,
Y.
,
1999
, “
Robotics for Surgery
,”
Annu. Rev. Biomed. Eng.
,
1
,
211
240
.10.1146/annurev.bioeng.1.1.211
11.
Elhawary
,
H.
,
Zivanovic
,
A.
,
Davies
,
B.
, and
Lampérth
,
M.
,
2006
, “
A Review of Magnetic Resonance Imaging Compatible Manipulators in Surgery
,”
Proc. Inst. Mech. Eng., IMechE Conf.
,
220
(
3
), pp.
413
424
.10.1243/09544119JEIM73
12.
Jolesz
,
F. A.
,
Morrison
,
P. R.
,
Koran
,
S. J.
,
Kelley
,
R. J.
,
Hushek
,
S. G.
,
Newman
,
R. W.
,
Fried
,
M. P.
, Melzer, A.,
Seibel
,
R. M.
, and
Jalahej
,
H.
,
1998
, “
Compatible Instrumentation for Intraoperative MRI: Expanding Resources
,”
J. MRI
,
8
(
1
), pp.
8
11
.
13.
Lakes
,
R. S.
,
1998
,
Viscoelastic Solids
,
CRC Press
,
Boca Raton, FL
.
14.
Kaneko
,
M.
,
Paetsch
,
W.
, and
Tolle
,
H.
,
1992
, “
Input-Dependent Stability of Joint Torque Control of Tendon-Driven Robot Hands
,”
IEEE Trans. Ind. Electron.
,
39
(
2
), pp.
96
104
.10.1109/41.166730
15.
Townsend
,
W. T.
, and
Salisbury
,
J. K.
, Jr.
, 1987, “
The Effect of Coulomb Friction and Stiction on Force Control
,” Proc.
IEEE
Int. Conf. Robot. and Autom.,
Raleigh, NC
, March, Vol. 4, pp.
883
889
.10.1109/ROBOT.1987.1087936
16.
Agrawal
, V
.
,
Peine
,
W. J.
, and
Yao
,
B.
,
2010
, “
Modeling of Transmission Characteristics Across a Cable-Conduit System
,”
IEEE Trans. Rob. Autom.
,
26
(
5
), pp.
914
924
.10.1109/TRO.2010.2064014
17.
Peine
,
J. W.
,
Agrawal
,
V.
, and
Peine
,
W. J.
,
2012
, “
Effect of Backlash on Surgical Robotic Task Proficiency,
” Proc.
IEEE
Int. Conf. Biomed Robotics and Biomechatronics,
Rome, Italy
, June, pp.
799
804
.10.1109/BioRob.2012.6290887
18.
Kaneko
,
M.
,
Yamashita
,
T.
, and
Tanie
,
K.
, 1991, “
Basic Considerations on Transmission Characteristics for Tendon Drive Robots
,” 5th International Conference on Advanced Robotics
(ICAR)
, Vol. 1, pp.
827
832
.10.1109/ICAR.1991.240572
19.
Palli
,
G.
, and
Melchiorri
,
C.
,
2006
, “
Model and Control of Tendon-Sheath Transmission Systems
,” Proc.
IEEE
Int. Conf. Robot. and Autom.,
Orlando, FL
, May, pp.
988
993
.10.1109/ROBOT.2006.1641838
20.
Schiele
,
A.
,
2008
, “
Performance Difference of Bowden Cable Relocated and Non-Relocated Master Actuators in Virtual Environment Applications
,” Proc.
IEEE
Int. Conf. on Intelligent Robots and Systems, Nice,
France
, September, pp.
3507
3512
.10.1109/IROS.2008.4650891
21.
Shaw
,
M. T.
, and
MacKnight
,
W. J.
,
2005
,
Introduction to Polymer Viscoelasticity
,
Wiley-Interscience
, Hoboken, NJ.
22.
Goeller
,
J. E.
, and
Laura
,
P. A.
, 1971, “
Analytical and Experimental Study of the Dynamic Response of Segmented Cable Segments
,”
J. Sound Vib.
,
18
(
3
), pp.
311
324
.10.1016/0022-460X(71)90704-8
23.
Tuah
,
H.
, and
Leonard
,
J. W.
, 1990, “
Dynamic Response of Viscoelastic Cable Elements
,”
Ocean Eng.
,
17
(
1–2
), pp.
23
34
.10.1016/0029-8018(90)90012-U
24.
Dowling
,
N. E.
,
1998
,
Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue
, 2nd ed.,
Prentice Hall
,
Englewood Cliffs, NJ
.
25.
Lu
,
Y.
, 2006, “
Fractional Derivative Viscoelastic Model for Frequency-Dependent Complex Moduli of Automotive Elastomers
,”
Int. J. Mech. Mater. Des.
,
3
(
4
), pp.
329
336
.10.1007/s10999-007-9039-x
26.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
, pp.
201
–210.10.1122/1.549724
27.
Agrawal
, V
.
,
Peine
,
W. J.
, and
Yao
,
B.
,
2012
, “
Dual Loop Control of Cable-Conduit Actuated Devices
,”
Proc. Am. Cont. Conf.
,
Montreal, Canada
, June.
You do not currently have access to this content.