In this paper, the possibility of performing severe collision avoidance maneuvers using trajectory optimization is investigated. A two degree of freedom vehicle model was used to represent dynamics of the vehicle. First, a linear tire model was used to calculate the required steering angle to perform the desired evasive maneuver, and a neighboring optimal controller was designed. Second, direct trajectory optimization algorithm was used to find the optimal trajectory with a nonlinear tire model. To evaluate the results, the calculated steering angles were fed to a full vehicle dynamics model. It was shown that the neighboring optimal controller was able to accommodate the introduced disturbances. Comparison of the resultant trajectories with other desired trajectories showed that it results in a lower lateral acceleration profile and a smaller maximum lateral acceleration; thus the time to perform an obstacle avoidance maneuver can be reduced using this method. A simulation case study of a limited lateral acceleration with constrained direct trajectory optimization shows that using the proposed trajectory optimization technique requires less time than that of trapezoidal acceleration profile for a lane change maneuver.

References

1.
Vahidi
,
A.
, and
Eskandarian
,
A.
,
2004
, “
Research Advances in Intelligent Collision Avoidance and Adaptive Cruise Control
,”
IEEE Trans. Intell. Transp. Syst.
,
4
(
3
) pp.
143
153
.10.1109/TITS.2003.821292
2.
Sahraei
,
E.
,
Marzougui
,
D.
, and
Digges
,
K.
,
2011
, “
Effect of Increase in Weight and Stiffness of Vehicles on the Safety of Rear Seat Occupants
,”
Int. J. Crashworthiness
,
16
(
3
) pp.
309
318
.10.1080/13588265.2011.566474
3.
Sahraei
,
E.
,
Digges
,
K.
, and
Marzougui
,
D.
,
2010
, “
Reduced Protection for Belted Occupants in Rear Seats Relative to Front Seats of New Model Year Vehicles
,”
Annals of Advances in Automotive Medicine/Annual Scientific Conference
,
54
, pp.
149
.
4.
Kawazoe
,
H.
,
Murakami
,
T.
, and
Sadano
,
O.
,
2001
, “
Development of a Lane-Keeping Support System
,” SAE Technical Paper No. 2001-01-0797.
5.
Chieh
,
C.
, and
Han-Shue
,
T.
,
1998
, “
Steering Control of High Speed Vehicles: Dynamic Look Ahead and Yaw Rate Feedback
,”
Proc. 37th IEEE Conf. on Decision and Control
, pp.
1025
1030
.10.1109/CDC.1998.760831
6.
Ackermann
,
J.
,
Guldner
,
J.
, and
Sienel
,
W.
,
1995
, “
Linear and Nonlinear Controller Design for Robust Automatic Steering
,”
IEEE Trans. Control Syst. Technol.
,
3
(
1
) pp.
132
143
.10.1109/87.370719
7.
Guldner
,
J.
,
Sienel
,
W.
, and
Han-Shue
,
T.
,
1999
, “
Robust Automatic Steering Control for Look-Down Reference Systems With Front and Rear Sensors
,”
IEEE Trans. Control Syst. Technol.
,
7
(
1
), pp.
2
11
.10.1109/87.736743
8.
Guldner
,
J.
,
Utkin
,
V. I.
, and
Ackermann
,
J.
,
1994
, “
A Sliding Mode Control Approach to Automatic Car Steering
,”
Am. Control Conf.
,
2
, pp.
1969
1973
.10.1109/ACC.1994.752420
9.
Akar
,
M.
, and
Kalkkuhl
,
J. C.
,
2008
, “
Lateral Dynamics Emulation via a Four-Wheel Steering Vehicle
,”
Veh. Syst. Dyn.
,
46
(
9
) pp.
803
829
.10.1080/00423110701632925
10.
Chee
,
W.
,
Tomizuka
,
M.
, and
Patwardhan
,
S.
,
1995
, “
Experimental Study of Lane Change Maneuver for AHS Applications
,”
Am. Control Conf.
,
1
, pp.
139
143
.10.1109/ACC.1995.529224
11.
Schiehlen
,
W.
, and
Petersen
,
U.
,
1997
, “
Control Concepts for Lateral Motion of Road Vehicles in Convoy
,”
Solid Mech. Appl.
,
52
, pp.
345
354
.10.1007/978-94-011-5778-0
12.
Soudbakhsh
,
D.
, and
Eskandarian
,
A.
,
2011
, “
Comparison of Linear and Nonlinear Controllers for Active Steering of Vehicles in Evasive Maneuvers
,”
Proc. Instit. Mech. Eng., Part I, J/Syst. Control Eng.
,
226
, pp.
215
232
.10.1177/0959651811414503
13.
Hatipoglu
,
C.
,
Ozguner
,
U.
, and
Redmill
,
K. A.
,
2003
, “
Automated Lane Change Controller Design
,”
IEEE Trans. Intell. Transp. Syst.
,
4
(
1
), pp.
13
22
.10.1109/TITS.2003.811644
14.
Furusho
,
H.
, and
Mouri
,
H.
,
1999
, “
Research on Automated Lane Tracking Using Linear Quadratic Control: Control Procedure for a Curved Path
,”
JSAE Rev.
,
20
(
3
), pp.
325
329
.10.1016/S0389-4304(99)00012-0
15.
Soudbakhsh
,
D.
, and
Eskandarian
,
A.
,
2010
, “
A Collision Avoidance Steering Controller Using Linear Quadratic Regulator
,”
SAE World Congress 2009
, Paper No. 2010-01-0459.
16.
Nagai
,
M.
,
Mouri
,
H.
, and
Raksincharoensak
,
P.
,
2002
, “
Vehicle Lane-Tracking Control With Steering Torque Input
,”
Veh. Syst. Dyn.
,
37
, pp.
267
278
.
17.
Ryu
,
J.
,
Kim
,
H.
, and
Kim
,
J.
,
2002
, “
An Emergency Obstacle Avoidance Control Strategy for Automated Highway Vehicles
,”
Veh. Syst. Dyn.
,
38
(
5
) pp.
319
339
.10.1076/vesd.38.5.319.8279
18.
Anderson
,
S.
,
Peters
,
S.
, and
Pilutti
,
T.
,
2010
, “
An Optimal-Control-Based Framework for Trajectory Planning, Threat Assessment, and Semi-Autonomous Control of Passenger Vehicles in Hazard Avoidance Scenarios
,”
Int. J. Vehicle Auton. Syst.
,
8
(
2
) pp.
190
216
.10.1504/IJVAS.2010.035796
19.
Keviczky
,
T.
,
Falcone
,
P.
, and
Borrelli
,
F.
,
2006
, “
Predictive Control Approach to Autonomous Vehicle Steering
,”
Am. Control Conf.
, pp.
4670
4675
.10.1109/ACC.2006.1657458
20.
Shiller
,
Z.
, and
Sundar
,
S.
,
1998
, “
Emergency Lane-Change Maneuvers of Autonomous Vehicles
,”
J. Dyn. Syst., Meas., Control
,
120
, pp.
37
44
.10.1115/1.2801319
21.
Hattori
,
Y.
,
Ono
,
E.
, and
Hosoe
,
S.
,
2006
, “
Optimum Vehicle Trajectory Control for Obstacle Avoidance Problem
,”
IEEE/ASME Trans. Mechatron.
,
11
(
5
) pp.
507
512
.10.1109/TMECH.2006.882981
22.
Bevan
,
G. P.
,
Gollee
,
H.
, and
O'Reilly
,
J.
,
2010
, “
Trajectory Generation for Road Vehicle Obstacle Avoidance Using Convex Optimization
,”
Proc. Inst. Mech. Eng., IMechE Conf.
,
224
, pp.
455
473
.10.1243/09544070JAUTO1204
23.
Sledge
,
N.
, and
Marshek
,
K.
,
1997
, “
Comparison of Ideal Vehicle Lane-Change Trajectories
,”
SAE Trans,
,
106
(
6
) pp.
2004
2027
.10.4271/971062
24.
Maeda
,
T.
,
Irie
,
N.
, and
Hidaka
,
K.
,
1977
, “
Performance of Driver-Vehicle System in Emergency Avoidance
,”
SAE Int.
,
770130
, pp.
518
541
.10.4271/770130
25.
Bogenrieder
,
R.
,
Fehring
,
M.
, and
Bachmann
,
R.
,
2009
, “
Pre-Safe® in Rear-End Collision Situations
,”
The 21st International Technical Conference on the Enhanced Safety of Vehicles Conference (ESV)
,
Stuttgart, Germany
.
26.
Eidehall
,
A.
,
Pohl
,
J.
,
Gustafsson
,
F.
, and
Ekmark
,
J.
,
2007
, “
Toward Autonomous Collision Avoidance by Steering
,”
IEEE Trans. Intell. Transp. Syst.
,
8
(
1
) pp.
84
94
.10.1109/TITS.2006.888606
27.
Nelson
,
W.
,
1989
, “
Continuous-Curvature Paths for Autonomous Vehicles
,”
IEEE Int. Conf. Rob. Autom.
,
3
, pp.
1260
1264
.
28.
Alleyne
,
A.
,
1997
, “
A Comparison of Alternative Obstacle Avoidance Strategies for Vehicle Control
,”
Veh. Syst. Dyn.
,
27
(
5
) pp.
371
392
.10.1080/00423119708969337
29.
Pacejka
,
H. B.
,
2006
,
Tyre and Vehicle Dynamics
,
Butterworth-Heinemann
,
Oxford
, pp.
xiii
, 642.
30.
Leonard
,
J.
,
How
,
J.
,
Teller
,
S.
,
2009
,
The DARPA Urban Challenge
,
Springer-Verlag
,
Berlin
, pp.
163
230
.
31.
Breakwell
,
J. V.
,
Speyer
,
J. L.
, and
Bryson
,
A. E.
,
1963
, “
Optimization and Control of Nonlinear Systems Using the Second Variation
,”
SIAM J. Control
,
1
(
2
) pp.
193
223
.10.1137/0301011
32.
Hargraves
,
C.
, and
Paris
,
S.
,
1987
, “
Direct Trajectory Optimization Using Nonlinear Programming and Collocation
,”
J. Guid. Control Dyn.
,
10
(
4
) pp.
338
342
.10.2514/3.20223
33.
Betts
,
J. T.
,
1998
, “
Survey of Numerical Methods for Trajectory Optimization
,”
J. Guid. Control Dyn.
,
21
(
2
) pp.
193
207
.10.2514/2.4231
34.
Gillespie
,
T. D.
,
1992
,
Fundamentals of Vehicle Dynamics
,
Society of Automotive Engineers
,
Warrendale, PA
, pp.
xxii
, 495.
35.
Heydinger
,
G.
,
Bixel
,
R.
, and
Garrott
,
W.
,
1999
, “
Measured Vehicle Inertial Parameters-NHTSA's Data Through November 1998
,” SAE Technical Paper No. 1999-01-1336.
You do not currently have access to this content.