This paper presents a new, robust, time-optimal control strategy for flexible manipulators controlled by acceleration-limited actuators. The strategy is designed by combining the well-known, open-loop, time-optimal solution with wave-based feedback control. The time-optimal solution is used to design a new launch wave input to the wave-based controller, allowing it to recreate the time-optimal solution when the system model is exactly known. If modeling errors are present or a real actuator is used, the residual vibrations, which would otherwise arise when using the time-optimal solution alone, are quickly suppressed due to the additional robustness provided by the wave-based controller. A proximal time-optimal response is still achieved. A robustness analysis shows that significant improvements can be achieved using wave-based control in conjunction with the time-optimal solution. The implications and limits are also discussed.

1.
Dwivedy
,
S. K.
, and
Eberhard
,
P.
, 2006, “
Dynamic Analysis of Flexible Manipulators, A Literature Review
,”
Mech. Mach. Theory
0094-114X,
41
(
7
), pp.
749
777
.
2.
Benosman
,
M.
, and
Vey
,
G. L.
, 2004, “
Control of Flexible Manipulators: A Survey
,”
Robotica
0263-5747,
22
(
5
), pp.
533
545
.
3.
Robinett
,
R. D.
, III
,
Dohrmann
,
C. R.
,
Eisler
,
G. R.
,
Feddema
,
J.
,
Parker
,
G. G.
,
Wilson
,
D. G.
, and
Stokes
,
D.
, 2002,
Flexible Robot Dynamics and Controls
,
Kluwer Academic
,
Dordrecht
/
Plenum
,
New York
.
4.
Sage
,
H. G.
,
De Mathelin
,
M. F.
, and
Ostertag
,
E.
, 1999, “
Robust Control of Robot Manipulators: A Survey
,”
Int. J. Control
0020-7179,
72
(
16
), pp.
1498
1522
.
5.
Tokhi
,
M. O.
, and
Azad
,
A. K. M.
, 2008,
Flexible Robot Manipulators: Modeling, Simulation and Control
,
IET
,
London
.
6.
Pao
,
L. Y.
, 1996, “
Minimum-Time Control Characteristics of Flexible Structures
,”
J. Guid. Control Dyn.
0731-5090,
19
, pp.
123
129
.
7.
Pao
,
L. Y.
, and
La-orpacharapan
,
C.
, 2004, “
Shaped Time-Optimal Feedback Controllers for Flexible Structures
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
, pp.
173
186
.
8.
Pao
,
L.
, and
Franklin
,
G.
, 1994, “
The Robustness of a Proximate Time-Optional Controller
,”
IEEE Trans. Autom. Control
0018-9286,
39
, pp.
1963
1966
.
9.
Romano
,
M.
,
Agrawal
,
B.
, and
Bernelli-Zazzera
,
F.
, 2002, “
Experiments on Command Shaping Control of a Manipulator With Flexible Links
,”
J. Guid. Control Dyn.
0731-5090,
25
(
2
), pp.
232
239
.
10.
Singer
,
N. C.
, and
Seering
,
W. P.
, 1990, “
Preshaping Command Inputs to Reduce System Vibrations
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
112
, pp.
76
82
.
11.
Banerjee
,
A. K.
, and
Singhose
,
W. E.
, 1998, “
Command Shaping in Tracking Control of a Two-Link Flexible Robot
,”
J. Guid. Control Dyn.
0731-5090,
21
, pp.
1012
1015
.
12.
Singh
,
T.
, and
Vadali
,
S. R.
, 1993, “
Robust Time-Delay Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
115
(
2A
), pp.
303
306
.
13.
Singh
,
T.
, and
Vadali
,
S. R.
, 1995, “
Robust Time-Delay Control of Multimode Systems
,”
Int. J. Control
0020-7179,
62
(
6
), pp.
1319
1339
.
14.
Singh
,
T.
, 2002, “
Minimax Design of Robust Controllers for Flexible Systems
,”
J. Guid. Control Dyn.
0731-5090,
25
(
5
), pp.
868
875
.
15.
Singhose
,
W.
,
Derezinski
,
S.
, and
Singer
,
N.
, 1996, “
Extra-Insensitive Input Shapers for Controlling Flexible Spacecraft
,”
J. Guid. Control Dyn.
0731-5090,
19
, pp.
385
91
.
16.
Muenchhof
,
M.
, and
Singh
,
T.
, 2003, “
Jerk Limited Time Optimal Control of Flexible Structures
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
(
1
), pp.
139
143
.
17.
Hillsley
,
K. L.
, and
Yurkovich
,
S.
, 1993, “
Vibration Control of a Two-Link Flexible Robot Arm
,”
Journal of Dynamics and Control
,
3
, pp.
261
280
.
18.
Huey
,
J. R.
, “
The Intelligent Combination of Input Shaping and PID Feedback Control
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
19.
Halevi
,
Y.
, 2005, “
Control of Flexible Structures Governed by the Wave Equation Using Infinite Dimensional Transfer Functions
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
, pp.
579
588
.
20.
O’Connor
,
W. J.
, and
Lang
,
D.
, 1998, “
Position Control of Flexible Robot Arms Using Mechanical Waves
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
(
3
), pp.
334
339
.
21.
O’Connor
,
W. J.
, 2003, “
A Gantry Crane Problem Solved
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
(
4
), pp.
569
576
.
22.
O’Connor
,
W. J.
, 2006, “
Wave-Echo Control of Lumped Flexible Systems
,”
J. Sound Vib.
0022-460X,
298
, pp.
1001
1018
.
23.
O’Connor
,
W. J.
, 2007, “
Wave-Based Analysis and Control of Lump-Modeled Flexible Robots
,”
IEEE Trans. Rob. Autom.
1042-296X,
23
, pp.
342
352
.
24.
O’Connor
,
W. J.
,
Ramos
,
F.
,
McKeown
,
D. J.
, and
Feliu
,
V.
, 2009, “
Wave-Based Control of Non-Linear Flexible Mechanical Systems
,”
Nonlinear Dyn.
0924-090X,”
57
(
1-2
), pp.
113
123
.
25.
O’Connor
W. J.
, and
Fumagalli
,
A.
, 2009, “
Refined Wave-Based Control Applied to Nonlinear, Bending, and Slewing Flexible Systems
,”
ASME J. Appl. Mech.
0021-8936,
76
(
4
), p.
041005
.
26.
Kenison
,
M.
, and
Singhose
,
W.
, 2002, “
Concurrent Design of Input Shaping and Proportional Plus Derivative Feedback Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
, pp.
398
405
.
You do not currently have access to this content.