This paper addresses the constrained receding horizon control scheme for a class of discrete-time Markovian jump linear systems with partly unknown transition probabilities and persistent bounded disturbances. The proposed method adopts paradigm that utilizes nominal closed-loop feedback controller plus an additional online optimized variable. Both the state feedback approach and the observer based approach are given. The obtained predictive controller guarantees constraint fulfillment and asymptotic state regulation in the mean square sense for all admissible disturbances. The system state and estimated state converge into a stochastic disturbance invariant set provided that the initial state and initial estimation error are feasible. A numerical example is given to verify the effectiveness of the proposed method.

1.
Park
,
B. G.
,
Kwon
,
W. H.
, and
Lee
,
J. W.
, 2001, “
Robust Receding Horizon Control of Discrete-Time Markovian Jump Uncertain Systems
,”
IEICE Trans. Fundamentals
0916-8508,
84-A
(
9
), pp.
2272
2279
.
2.
Ji
,
Y.
,
Chezick
,
H. J.
,
Feng
,
X.
, and
Loparo
,
K. A.
, 1991, “
Stability and Control of Discrete-Time Jump Linear Systems
,”
Control Theory Adv. Technol.
0911-0704,
7
(
2
), pp.
247
270
.
3.
Costa
,
O. L. V.
, and
Fragoso
,
M. D.
, 1993, “
Stability Results for Discrete Time Linear Systems With Markovian Jumping Parameters
,”
J. Math. Anal. Appl.
0022-247X,
179
(
1
), pp.
154
178
.
4.
Pan
,
G.
, and
Bar-Shalom
,
Y.
, 1996, “
Stabilization of Jump Linear Gaussian Systems Without Mode Observation
,”
Int. J. Control
0020-7179,
64
(
4
), pp.
631
661
.
5.
Cao
,
Y. Y.
, and
Lam
,
J.
, 1999, “
Stochastic Stabilizability and H∞ Control for Discrete-Time Jump Linear Systems With Time Delay
,”
J. Franklin Inst.
0016-0032,
336
(
8
), pp.
1263
1281
.
6.
Costa
,
O. L. V.
,
Val
,
J. B. R. D.
, and
Geromel
,
J. C.
, 1997, “
A Convex Programming Approach to H2-Control of Discrete-Time Markovian Jump Linear Systems
,”
Int. J. Control
0020-7179,
66
(
4
), pp.
557
579
.
7.
Costa
,
O. L. V.
, and
Marques
,
R. P.
, 1998, “
Mixed H2/H∞ Control of Discrete-Time Markovian Jump Linear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
43
(
1
), pp.
95
100
.
8.
Seiler
,
P.
, and
Sengupta
,
R.
, 2003, “
A Bounded Real Lemma for Jump Systems
,”
IEEE Trans. Autom. Control
0018-9286,
48
(
9
), pp.
1651
1654
.
9.
Ghaoui
,
L. E.
, and
Aitrami
,
M.
, 1996, “
Robust State Feedback Stabilization of Jump Linear Systems via LMIs
,”
Int. J. Robust Nonlinear Control
1049-8923,
6
(
9–10
), pp.
1015
1022
.
10.
Shi
,
P.
, and
Boukas
,
E. K.
, 1997, “
H∞ Control for Markovian Jumping Linear Systems With Parametric Uncertainty
,”
J. Optim. Theory Appl.
0022-3239,
95
(
1
), pp.
75
99
.
11.
Boukas
,
E. K.
, and
Shi
,
P.
, 1998, “
Stochastic Stability and Guaranteed Cost Control of Discrete-Time Uncertain Systems With Markovian Jumping Parameters
,”
Int. J. Robust Nonlinear Control
1049-8923,
8
(
13
), pp.
1155
1167
.
12.
Shi
,
P.
,
Boukas
,
E. K.
, and
Agarwal
,
R. K.
, 1990, “
Robust Control for Markovian Jump Discrete-Time Systems
,”
Int. J. Syst. Sci.
0020-7721,
30
(
8
), pp.
787
797
.
13.
Costa
,
O. L. V.
,
Fragoso
,
M. D.
, and
Marques
,
R. P.
, 2005,
Discrete Time Markovian Jump Linear Systems
,
Springer-Verlag
,
London
.
14.
Karan
,
M.
,
Shi
,
P.
, and
Kaya
,
C. Y.
, 2006, “
Transition Probability Bounds for the Stochastic Stability Robustness of Continuous- and Discrete-Time Markovian Jump Linear Systems
,”
Automatica
0005-1098,
42
(
12
), pp.
2159
2168
.
15.
Xiong
,
J. L.
,
Lam
,
J.
,
Gao
,
H. J.
, and
Daniel
,
W. C.
, 2005, “
On Robust Stabilization of Markovian Jump Systems With Uncertain Switching Probabilities
,”
Automatica
0005-1098,
41
(
5
), pp.
897
903
.
16.
Zhang
,
L. X.
, and
Boukas
,
E. K.
, 2009, “
Stability and Stabilization of Markovian Jump Linear Systems With Partly Unknown Transition Probabilities
,”
Automatica
0005-1098,
45
(
2
), pp.
463
468
.
17.
Zhang
,
L. X.
, and
Boukas
,
E. K.
, 2009, “
Mode-Dependent H∞ Filtering for Discrete-Time Markovian Jump Linear Systems With Partly Unknown Transition Probabilities
,”
Automatica
0005-1098,
45
(
6
), pp.
1462
1467
.
18.
Kothare
,
M. V.
,
Balakrishnan
,
V.
, and
Morari
,
M.
, 1996, “
Robust Constrained Model Predictive Control Using Linear Matrix Inequalities
,”
Automatica
0005-1098,
32
(
10
), pp.
1361
1379
.
19.
Mayne
,
D. Q.
,
Rawlings
,
J. B.
, and
Rao
,
C. V.
, 2000, “
Constrained Model Predictive Control: Stability And Optimality
,”
Automatica
0005-1098,
36
(
6
), pp.
789
814
.
20.
Lee
,
Y. L.
, and
Kouvaritakis
,
B.
, 2001, “
Receding Horizon Output Feedback Control for Linear Systems With Input Saturation
,”
IEE Proc.: Control Theory Appl.
1350-2379,
148
(
2
), pp.
109
115
.
21.
Chisci
,
L.
,
Rossiter
,
J. A.
, and
Zappa
,
G.
, 2001, “
System With Persistent Disturbance: Predictive Control With Restricted Constraints
,”
Automatica
0005-1098,
37
(
7
), pp.
1019
1028
.
22.
Mayne
,
D. Q.
,
Seron
,
M. M.
, and
Raković
,
S. V.
, 2005, “
Robust Model Predictive Control of Constrained Linear Systems With Bounded Disturbances
,”
Automatica
0005-1098,
41
(
2
), pp.
219
224
.
23.
Mayne
,
D. Q.
,
Raković
,
S. V.
,
Findeisen
,
R.
, and
Allgöwer
,
F.
, 2006, “
Robust Output Feedback Model Predictive Control of Constrained Linear Systems
,”
Automatica
0005-1098,
42
(
7
), pp.
1217
1222
.
24.
Raković
,
S. V.
,
Kerrigan
,
E. C.
,
Mayne
,
D. Q.
, and
Kouramas
,
K. I.
, 2007, “
Optimized Robust Control Invariance for Linear Discrete-Time Systems: Theoretical Foundation
,”
Automatica
0005-1098,
43
(
5
), pp.
831
841
.
25.
Park
,
B. G.
, and
Kwon
,
W. H.
, 2002, “
Robust One-Step Receding Horizon Control of Discrete Time Markovian Jump Uncertain Systems
,”
Automatica
0005-1098,
38
(
7
), pp.
1229
1235
.
26.
Val
,
J. B. R. D.
, and
Basar
,
T.
, 1997, “
Receding Horizon Control of Markov Jump Linear Systems
,”
Proceedings of the 1997American Control Conference
, Albuquerque, Vol.
5
, pp.
3195
3199
.
27.
Park
,
B. G.
,
Lee
,
J. W.
, and
Kwon
,
W. H.
, 1997, “
Receding Horizon Control for Linear Discrete Systems With Jump Parameters
,”
Proceedings of the 36th Conference on Decision and Control
, San Diego, Vol.
4
, pp.
3956
3957
.
28.
Chen
,
J. R.
, and
Liu
,
F.
, 2008, “Robust Model Predictive Control for Markov Jump Systems Subject Actuator Saturation,” Journal of Systems Engineering and Electronics, 30(4), pp. 696–699.
29.
Cai
,
Y.
, and
Liu
,
F.
, 2007, “Constrained One Step Predictive Control of Discrete Time Markovian Jump Linear System,” Journal of Systems Engineering and Electronics, 29(6), pp. 950–954.
30.
Liu
,
F.
, and
Cai
,
Y.
, 2008, “
Constrained Predictive Control of Markov Jump Linear Systems Based on Terminal Invariant Sets
,”
Acta Automatica Sin.
,
34
(
4
), pp.
496
499
.
31.
Kwon
,
W. H.
, and
Han
,
S.
, 2005,
Receding Horizon Control
,
Springer-Verlag
,
London
.
32.
Kolmanovsky
,
I.
, and
Gilbert
,
E. G.
, 1995, “
Maximal Output Admissible SET for Discrete-Time Systems With Disturbance Inputs
,”
Proceedings of the 1995 American Control Conference
, Seattle, Vol. 3, pp. 1995–1999.
You do not currently have access to this content.