A new approach to controlling the ensemble behavior of many identical agents is presented in this paper, inspired by motor recruitment in skeletal muscles. A group of finite state agents responds randomly to broadcast commands, each producing a state-dependent output that is measured in aggregate. Despite the lack of feedback signal and initial state information, this control architecture allows a single central controller to direct the aggregate output of the ensemble toward a desired value. First, the system is modeled as an ensemble of statistically independent, identically distributed, binary-state Markov processes with state transition probabilities designated by a central controller. Second, steady-state behavior, convergence rate, and variance of the aggregate output, i.e., the total number of recruited agents, are analyzed, and design trade-offs in terms of accuracy, convergence speed, and the number of spurious transitions are made. Third, a limited feedback signal, only detecting if the output has reached a goal, is added to the system, and the recruitment controller is designed as a stochastic shortest path problem. Optimal convergence rate and associated transition probabilities are obtained. Finally, the theoretical results are verified and demonstrated with both numerical simulation and control of an artificial muscle actuator made up of 60 binary shape memory alloy motor units.

1.
Julius
,
A.
,
Halasz
,
A.
,
Sakar
,
M.
,
Rubin
,
H.
,
Kumar
,
V.
, and
Pappas
,
G.
, 2008, “
Stochastic Modeling and Control of Biological Systems: The Lactose Regulation System of Escherichia Coli
,”
IEEE Trans. Autom. Control
0018-9286,
53
, pp.
51
65
.
2.
Wood
,
L. B.
,
Das
,
A.
,
Kamm
,
R. D.
, and
Asada
,
H. H.
, 2008, “
A Stochastic Control Framework for Regulating Collective Behaviors of an Angiogenesis Cell Population
,”
Second IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 2008. BioRob 2008
, Oct. 19-22, pp.
390
396
.
3.
Balch
,
T.
,
Dellaert
,
F.
,
Feldman
,
A.
,
Guillory
,
A.
,
Isbell
,
C.
,
Khan
,
Z.
,
Pratt
,
S.
,
Stein
,
A.
, and
Wilde
,
H.
, 2006, “
How Multirobot Systems Research Will Accelerate Our Understanding of Social Animal Behavior
,”
Proc. IEEE
0018-9219,
94
(
7
), pp.
1445
1463
.
4.
Geer
,
D.
, 2005, “
Small Robots Team up to Tackle Large Tasks
,”
IEEE Distributed Systems Online
1541-4922,
6
(
12
), p.
2
-
2
.
5.
Pham
,
Q. -C.
, and
Slotine
,
J. -J.
, 2007, “
Stable Concurrent Synchronization in Dynamic System Networks
,”
Neural Networks
0893-6080,
20
(
1
), pp.
62
77
.
6.
Bretl
,
T.
, 2007, “
Control of Many Agents Using Few Instructions
,”
Robotics: Science and Systems
, Atlanta, GA.
7.
Belta
,
C.
, and
Kumar
,
V.
, 2004, “
Abstraction and Control for Groups of Robots
,”
Robotics, IEEE Transactions on
,
20
(
5
), pp.
865
875
.
8.
Sugawara
,
K.
, and
Sano
,
M.
, 1997, “
Cooperative Acceleration of Task Performance: Foraging Behavior of Interacting Multi-Robots System
,”
Physica D
0167-2789,
100
, pp.
343
354
.
9.
Michael
,
N.
,
Zavlanos
,
M. M.
,
Kumar
,
V.
, and
Pappas
,
G. J.
, 2008, “
Distributed Multi-Robot Task Assignment and Formation Control
,”
IEEE International Conference on Robotics and Automation, 2008. ICRA 2008
, May 19–23, pp.
128
133
.
10.
De Rossi
,
D.
,
Suzuki
,
M.
,
Osada
,
Y.
, and
Morasso
,
P.
, 1992, “
Pseudomuscular Gel Actuators for Advanced Robotics
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
3
(
1
), pp.
75
95
.
11.
Odhner
,
L.
,
Ueda
,
J.
, and
Asada
,
H. H.
, 2006,
Feedback Control of Stochastic Cellular Actuators
,
Springer
, pp.
481
490
.
12.
Ueda
,
J.
,
Odhner
,
L.
, and
Asada
,
H. H.
, 2007, “
Broadcast Feedback of Stochastic Cellular Actuators Inspired by Biological Muscle Control
,”
Int. J. Robot. Res.
0278-3649,
26
(
11–12
), pp.
1251
1265
.
13.
Ueda
,
J.
,
Odhner
,
L.
, and
Asada
,
H. H.
, 2007, “
Broadcast Feedback for Stochastic Cellular Actuator Systems Consisting of Nonuniform Actuator Units
,”
2007 IEEE International Conference on Robotics and Automation
, Apr. 10–14, pp.
642
647
.
14.
Henneman
,
E.
,
Somjen
,
G.
, and
Carpenter
,
D.
, 1965, “
Functional Significance of Cell Size in Spinal Motoneurons
,”
Neurophysiology
0090-2977,
28
(
3
), pp.
560
580
.
15.
Zajac
,
F.
, 1989, “
Muscle and Tendon: Properties, Models, Scaling and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
0278-940X,
17
(
4
), pp.
359
411
.
16.
Gillespie
,
D.
, 1977, “
Exact Stochastic Simulation of Coupled Chemical Reactions
,”
J. Phys. Chem.
0022-3654,
81
(
25
), pp.
2340
2361
.
17.
Han
,
S.
,
Kurrer
,
C.
, and
Kuramoto
,
Y.
, 1995, “
Dephasing and Bursting in Coupled Neural Oscillators
,”
Phys. Rev. Lett.
0031-9007,
75
(
17
), pp.
3190
3193
.
18.
Grossberg
,
S.
, 1982, “
Why Do Cells Compete? Some Examples From Visual Perception
,”
The UMAP Journal
0197-3622,
3
(
1
), pp.
103
121
.
19.
Berman
,
S.
,
Halasz
,
A.
,
Kumar
,
V.
, and
Pratt
,
S.
, 2007, “
Bio-Inspired Group Behaviors for the Deployment of a Swarm of Robots to Multiple Destinations
,”
2007 IEEE International Conference on Robotics and Automation
, Apr. 10–14, pp.
2318
2323
.
20.
Mantzaris
,
N.
,
Webb
,
S.
, and
Othmer
,
H.
, 2004, “
Mathematical Modeling of Tumor-Induced Angiogenesis
,”
J. Math. Biol.
0303-6812,
49
(
2
), pp.
111
187
.
21.
McDougall
,
S.
,
Anderson
,
R.
, and
Chaplain
,
M.
, 2006, “
Mathematical Modeling of Dynamic Adaptive Tumor-Induced Angiogenesis: Clinical Implications and Therapeutic Targeting Strategies
,”
J. Theor. Biol.
0022-5193,
241
(
3
), pp.
564
589
.
22.
Wood
,
L. B.
,
Das
,
A.
,
Kamm
,
R. D.
, and
Asada
,
H. H.
, 2009, “
A Stochastic Broadcast Feedback Approach to Regulating Cell Population Morphology for Microfluidic Angiogenesis Platforms
,”
IEEE Trans. Biomed. Eng.
0018-9294,
56
(
9
), pp.
2299
2303
.
23.
Halasz
,
A.
,
Hsieh
,
M.
,
Berman
,
S.
, and
Kumar
,
V.
, 2007, “
Dynamic Redistribution of a Swarm of Robots Among Multiple Sites
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007
, pp.
2320
2325
.
24.
Ueda
,
J.
,
Odhner
,
L.
,
Kim
,
S. -G.
, and
Asada
,
H. H.
, 2006, “
Distributed Stochastic Control of MEMS-PZT Cellular Actuators With Broadcast Feedback
,”
The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. BioRob 2006
, Feb. 20–22, pp.
272
277
.
You do not currently have access to this content.